Study of Thermal and Optical Sensitivity of Higher Thermo luminescence Glow Peaks in Synthetic Quartz Material

Authors

  • T B Akhani Parul Institute of Applied Sciences, Parul University, P O Limda, Vadodara, India Author
  • Y D Kale Applied Sciences and Humanities Department, Parul Institute of Technology, Parul University, P O Limda, Vadodara, India Author
  • Y H Gandhi Applied Physics Department, Faculty of Engineering & Technology, the M. S. University of Baroda, Vadodara, India Author

DOI:

https://doi.org/10.55524/

Keywords:

Annealing Treatment, Beta DosE, Optical Bleaching, Pre-Heat Duration, Synthetic Quartz, Thermo luminescence

Abstract

In the present scenario, 600 oC and 1000 oC  annealed synthetic quartz material were irradiated by beta  doses. The thermoluminescence glow curves are recorded for  treated sample under influence of optical bleaching  temperature and cutoff duration of 290 oC preheat  temperature. The thermal and optical sensitivity of higher  temperature TL glow peaks are to be examined including  their dose response. Under the influence of optical bleaching  either at room temperature or 160 oC, the growth of 375 oC  TL glow peak is observed at 600 oC annealed sample by  complete bleaching of 350 oC glow peak. However, the  thermal stability and optical sensitivity of this peak is  increased when the temperature is increased to1000 oC  annealed sample accordance with new 220 oC TL glow peak by complete optical bleaching of 300 oC glow peak. The  cutoff durations of 290 oC preheat temperature followed  optical bleaching at 160 oC show unique contribution of 375  oC and 220 oC glow peaks in 600 oC and 1000 oC annealed  sample respectively. This Study focussed on the Thermal and  Optical Sensitivity of Higher Thermo luminescence Glow  Peaks in Synthetic Quartz Material. The changes in TL  outcomes are elaborated by thermal and optical sensitization  properties of TL traps under annealing treatment, pre-heat  temperature and optical bleaching temperature.  

Downloads

Download data is not yet available.

References

P. G. Benny and B. C. Bhatt, “High-level gamma dosimetry using phototransferred thermoluminescence in quartz,” Appl. Radiat. Isot., 2002, doi: 10.1016/S0969- 8043(01)00149-X.

P. G. Benny and B. C. Bhatt, “Sensitization of 220°C TL peak in quartz separated from sand,” Radiat. Meas., 1997, doi: 10.1016/S1350-4487(97)00001-2.

Y. H. Gandhi, P. R. Vyas, and T. R. Joshi, “Trap Level Characterization of Synthetic Quartz,” Cryst. Res. Technol., 1995, doi: 10.1002/crat.2170300725.

R. Johnson, P. Biswas, P. Ramavath, R. S. Kumar, and G. Padmanabham, “Transactions of the Indian Ceramic Society Transparent Polycrystalline Ceramics: An Overview Transparent Polycrystalline Ceramics: An Overview,” Trans. Indian Ceram. Soc., 2012.

V. A. Emelyanov, E. B. Shershnev, and S. I. Sokolov, “Two-beam laser purification of quartz raw material,” Dokl. BGUIR, 2021, doi: 10.35596/1729-7648-2021-19-3-40-48.

L. Wang, W. Chen, Z. Cui, Z. Wang, Y. Wang, and B. Ji, “Test on the permeability of quartz hybrid phenolic material under different pyrolysis temperatures,” Guofang Keji Daxue Xuebao/Journal Natl. Univ. Def. Technol., 2021, doi: 10.11887/j.cn.202105018.

A. N. Savichev and P. A. Krasil’nikov, “Uralian Ultrapure Quartz: Raw Material Source for Making Transparent Quartz Glass,” Glas. Ceram. (English Transl. Steklo i Keramika), 2020, doi: 10.1007/s10717-020-00257-w.

L. Bøtter-Jensen, “Luminescence techniques: Instrumentation and methods,” Radiat. Meas., 1997, doi: 10.1016/S1350-4487(97)00206-0.

X. Zhang et al., “The association of telomere length in peripheral blood cells with cancer risk:ASystematic review and meta-Analysis of prospective studies,” Cancer Epidemiology Biomarkers and Prevention. 2017, doi: 10.1158/1055-9965.EPI-16-0968.

K. C. Esteves et al., “Adverse childhood experiences: Implications for offspring telomere length and psychopathology,” Am. J. Psychiatry, 2020, doi: 10.1176/appi.ajp.2019.18030335.

D. Golomb, K. Donner, L. Shacham, D. Shlosberg, Y. Amitai, and D. Hansel, “Mechanisms of firing patterns in fast-spiking cortical interneurons,” PLoS Comput. Biol., 2007, doi: 10.1371/journal.pcbi.0030156.

R. Li, Y. Zhang, Y. Zhang, W. Liu, Y. Li, and H. Deng, “Plasma-based isotropic etching polishing of synthetic quartz,” J. Manuf. Process., 2020, doi: 10.1016/j.jmapro.2020.10.075.

D. Miallier et al., “Intercomparison of red TL and ESR signals from heated quartz grains,” Radiat. Meas., 1994, doi: 10.1016/1350-4487(94)90031-0.

A. P. Voronov et al., “Effect of thallium impurity on the growth kinetics and perfection of KDP crystals,” Funct. Mater., 2011.

C. Ankjærgaard, A. S. Murray, and P. M. Denby, “Thermal pre-treatment in the OSL dating of quartz: Is it necessary?,” Radiat. Prot. Dosimetry, 2006, doi: 10.1093/rpd/nci501.

Published

2022-03-30

How to Cite

Study of Thermal and Optical Sensitivity of Higher Thermo luminescence Glow Peaks in Synthetic Quartz Material . (2022). International Journal of Innovative Research in Computer Science & Technology, 10(2), 568–580. https://doi.org/10.55524/