Application of Fermat’s Little Theorem in Congruence Relation Modulo n

Authors

  • S P Behera Assistant Professor of Mathematics, C.V.Raman Global University, Bhubaneswar, Odisha, India Author
  • J K Pati Associate Professor of Mathematics, C.V.Raman Global University, Bhubaneswar, Odisha, India Author
  • S K Patra MSc Project Scholar, C.V. Raman Global University, Bhubaneswar, Odisha, India Author
  • P K Raut Research Scholar, C.V. Raman Global University, Bhubaneswar, Odisha, India Author

DOI:

https://doi.org/10.55524/

Keywords:

Chinese Remainder theorem, Euler’s Function, Fermat’s little theorem, Primitive Roots

Abstract

According to Fermat's little theorem, for  any p is a prime integer and ������(��, ��) = 1, then the  congruence ����−1 ≡ 1(������ �� )is true, if we remove the  restriction that ������(��, ��) = 1, we may declare����−1 ≡ ��(������ ��). For every integer x. Euler extended Fermat's  Theorem as follows: if ������(��, ��) = 1,then,where ����(��) ≡ 1(������ ��).�� is Euler's phi-function. Euler's theorem cannot be implemented for any every  integers x in the same manners as Fermat’s theorem works;  that is, the congruence ����(��)+1 ≡ ��(������ ��) is not always  true. In this paper, we discussed the validation of  congruence ����(��)+1 ≡ ��(������ ��). 

Downloads

Download data is not yet available.

References

Niven, Zuckerman and Montgomery 1991, An Introduction to the Theory of Numbers, 4th edition (New York: Wiley). [2] S.P Behera and A.C Panda, Nature Of Diophantine Equation 4x +12y= z2, International Journal of Innovative Research in Computer Science and Technology (IJIRCST), Vol.09 (6) (2021), 11-12.

Diamond F, Shurman J. A first course in modular forms. Springer; 2005.

N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compos. Math.Vol18 (8) (2015) 1395–1415

G. Turcas, On Fermat’s equation over some quadratic imaginary number fields, Res. Number Theory 4 (2018) 24 [6] G. Turcas, On Fermat’s equation over some quadratic imaginary number fields, Res. Number Theory 4 (2018) 24

Downloads

Published

2022-03-30

How to Cite

Application of Fermat’s Little Theorem in Congruence Relation Modulo n . (2022). International Journal of Innovative Research in Computer Science & Technology, 10(2), 7–9. https://doi.org/10.55524/