Application of Fermat’s Little Theorem in Congruence Relation Modulo n
DOI:
https://doi.org/10.55524/Keywords:
Chinese Remainder theorem, Euler’s Function, Fermat’s little theorem, Primitive RootsAbstract
According to Fermat's little theorem, for any p is a prime integer and ������(��, ��) = 1, then the congruence ����−1 ≡ 1(������ �� )is true, if we remove the restriction that ������(��, ��) = 1, we may declare����−1 ≡ ��(������ ��). For every integer x. Euler extended Fermat's Theorem as follows: if ������(��, ��) = 1,then,where ����(��) ≡ 1(������ ��).�� is Euler's phi-function. Euler's theorem cannot be implemented for any every integers x in the same manners as Fermat’s theorem works; that is, the congruence ����(��)+1 ≡ ��(������ ��) is not always true. In this paper, we discussed the validation of congruence ����(��)+1 ≡ ��(������ ��).
Downloads
References
Niven, Zuckerman and Montgomery 1991, An Introduction to the Theory of Numbers, 4th edition (New York: Wiley). [2] S.P Behera and A.C Panda, Nature Of Diophantine Equation 4x +12y= z2, International Journal of Innovative Research in Computer Science and Technology (IJIRCST), Vol.09 (6) (2021), 11-12.
Diamond F, Shurman J. A first course in modular forms. Springer; 2005.
N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compos. Math.Vol18 (8) (2015) 1395–1415
G. Turcas, On Fermat’s equation over some quadratic imaginary number fields, Res. Number Theory 4 (2018) 24 [6] G. Turcas, On Fermat’s equation over some quadratic imaginary number fields, Res. Number Theory 4 (2018) 24