Mutual Coupling Reduction Using 8x8 MIMO Antenna for MM Wave Applications

Authors

  • M Raja Kumar Assistant Professor, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • M Koteswara Rao Associate Professor, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • G AshaJyothi UG Student, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • S K Durshid UG Student, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • D Manoj Kumar UG Student, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • B Mahesh UG Student, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author
  • G Rajesh UG Student, Department of Electronics and Communications Engineering, PACE Institute of Technology & Sciences, Ongole, Andhra Pradesh, India Author

DOI:

https://doi.org/10.55524/ijircst.2023.11.3.11

Keywords:

MIMO Antenna, MM Wave, Multi-Band antennas, 5G, Mobile Communication

Abstract

A 8x8 multiple input multiple output an tenna is developed for the applications of MM wave. this  proposed model has 8 ports on the single structure of anten na system. The proposed design gives a triple bands k-band  (14.6 at-22dB), ku-band(19.6 at -28dB) and ka-band(27.6 at  -27dB) which this ka-band wii be act as mm wave band for  the applications of MM wave. The proposed antenna having  the dimensions of 64mm x 32mm x 1.6 mm having thick ness 1.6mm and the Fr4 substrate has been used for design ing. The proposed antenna is designed, measured and tested 

Downloads

Download data is not yet available.

References

Xu, W., Lv, T., Guo, H., Yang, J., Bi, Y., Zhang, Q., ... & Li, X. (2021). A graphene‐metamaterial hybrid structure for the design of reconfigurable low pass terahertz filters. Micro wave and Optical Technology Letters, 63(3), 817-822.

Correas-Serrano, D., Gomez-Diaz, J. S., Perruisseau-Carrier, J., & Alvarez-Melcon, A. (2014). Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Transac tions on Nanotechnology, 13(6), 1145-1153.

Sun, H., Zhao, L., Dai, J., Liang, Y., Guo, J., Meng, H., ... & Wei, Z. (2020). Broadband filter and adjustable extinction ra tio modulator based on metal-graphene hybrid metamaterials. Nanomaterials, 10(7), 1359.

Li, P., Shi, Y., Deng, Y., Fay, P., & Liu, L. (2021, April). A G-Band Reconfigurable Waveguide-Based Bandstop Filter Enabled by High-Performance Optically Controlled RF Switches. In 2021 IEEE 21st Annual Wireless and Micro

wave Technology Conference (WAMICON) (pp. 1-4). IEEE. [5] Sanphuang, V., Ghalichechian, N., Nahar, N. K., & Volakis, J. L. (2016). Reconfigurable THz filters using phase-change material and integrated heater. IEEE Transactions on Te rahertz Science and Technology, 6(4), 583-591.

Wei, F., Zhang, C. Y., Zeng, C., & Shi, X. W. (2021). A re configurable balanced dual-band bandpass filter with con stant absolute bandwidth and high selectivity. IEEE Transac tions on Microwave Theory and Techniques, 69(9), 4029- 4040.

Lv, X., Ako, R. T., Bhaskaran, M., Sriram, S., Fumeaux, C., & Withayachumnankul, W. (2022). Frequency-Selective Surface-BasedMechanically Reconfigurable Terahertz Band pass Filter. IEEE Transactions on Terahertz Science and Technology, 12(3), 257-266.

Han, Z., Kohno, K., Fujita, H., Hirakawa, K., & Toshiyoshi, H. (2014). Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE Journal of Selected Topics in Quantum Electronics, 21(4), 114-122.

Liu, X., Xie, Y., Chen, W., Khan, S. A., Zhou, J., Qiu, J., & Zhu, J. (2022). Reconfigurable high-Q terahertz filtering of VO2-based metamaterials using optical tunneling. Results in Physics, 39, 105740.

Sanphuang, V., Ghalichechian, N., Nahar, N. K., & Volakis, J. L. (2014, July). Reconfigurable THz filters with integrated micro-heater. In 2014 IEEE Antennas and Propagation Socie ty International Symposium (APSURSI) (pp. 565-566). IEEE.

Liu, J., & Hong, Z. (2018). Mechanically tunable dual fre quency THz metamaterial filter. Optics Communications, 426, 598-601.

Li, P., Hu, F., Wang, Z., Jiang, W., & Chen, Y. (2017). De sign of tunable terahertz bandstop filter based on electrostati cally actuated reconfigurable metamaterials. Optics Commu nications, 392, 263-267.

Han, Z., Kohno, K., Makela, T., Haatainen, T., Fujita, H., Hirakawa, K., & Toshiyoshi, H. (2014, August). A MEMS reconfigurable metamaterial for terahertz filter applications. In 2014 8th International Congress on Advanced Electro

magnetic Materials in Microwaves and Optics (pp. 346-348). IEEE.

Jaiswal, R. K., Pandit, N., & Pathak, N. P. (2018). Spoof surface plasmon polaritons based reconfigurable band-pass filter. IEEE photonics technology letters, 31(3), 218-221.

Sanphuang, V., Ghalichechian, N., Nahar, N. K., & Volakis, J. L. (2015, July). Bandwidth reconfigurable THz filter em ploying phase-change material. In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 2289-2290). IEEE.

Ahamed, E., Tamim, A. M., Faruque, M. R. I., Sifat, R., & Islam, M. T. (2021). Reconfigurable THz metamaterial filter based on binary response for information processing system. Frontiers in Physics, 9, 661060.

Gómez-García, R., Muñoz-Ferreras, J. M., Feng, W., & Psy chogiou, D. (2018). Balanced symmetrical quasi reflectionless single-and dual-band bandpass planar filters. IEEE Microwave and Wireless Components Letters, 28(9), 798-800.

Islam, H., Das, S., Bose, T., & Ali, T. (2020). Diode based reconfigurable microwave filters for cognitive radio applica tions: A review. IEEE Access, 8, 185429-185444.

Downloads

Published

2023-05-30

How to Cite

Mutual Coupling Reduction Using 8x8 MIMO Antenna for MM Wave Applications . (2023). International Journal of Innovative Research in Computer Science & Technology, 11(3), 61–66. https://doi.org/10.55524/ijircst.2023.11.3.11