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Abstract: This paper studies the solutions of variational 
methods for random ordinary (partial) di�erential equations in 
L2−space. These methods are called Galerkin method, 
Petrov-Galerkin method, Least-Squares method and Collocation 
method. Some basic properties of these methods where applying 
on random problems will be shown throughout some numerical 
examples. 
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I. INTRODUCTION 

Deriving the random governing dynamics of physical 
processes is a complicated task in itself; finding exact solutions 
to the governing random ordinary (partial) differential 
equations is usually even more formidable. When trying to 
solve such equations, approximate methods of analysis provide 
a convenient, alternative method for finding solutions 
[1,2,3,4,5,6] Four such methods, the Galerkin method, 
Petrov-Galerkin method, Least-Squares method and 
Collocation method, are typically used in our paper and are 
referred to as classical variational methods [7,8,9,10,11,12,13]. 
Various variational methods differ from each other in the 
choice of integral form, weighting functions, and/or 
approximating functions [7,11]. 
Classical variational methods suffer from the disadvantage of 
the difficulty associated with proper construction of the 
approximating functions for arbitrary domains. This paper is 
organized as follows, Section 2, deals with preliminaries of 
some points used in the paper. Section 3, deals with solving a 
random ordinary and partial differential equation using the 
variational methods. Section 4, deals with the convergence of 
the approximation solutions. Section 5 is devoted to some 
numerical examples. 

II. PRELIMINARIES 

Definition1. [14] A Hilbert space H is a real or complex 
inner product space that is also complete metric space with 
respect to the distance function induced by the inner product, 

‖f‖ = �〈f. f〉 

An example of a Hilbert space is the 2L  space which is the  
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space of all functions :f R R  such that, the integral of  
2f  over the whole real line is finite, 

, ( ) ( )f g f x g x dx



     

Hilbert spaces constitute the class of infinite-dimensional 
vector spaces that are most often used and that are the most 
important as far as applications are concerned. They are the 
natural extension of the concept of a finite-dimensional vector 
space with a scalar product. 

Definition2.[15] A real random variable X  on a probability 

space ( , ô , P ) and satisfying the property that 

 
2

E X   
 

 

is called second order random variable (2-r.v.) where,  E  

denotes the expectation value operator. If 2X L ( )  , then 

the 2L  norm is defined as 

1
2 2X = E X2

  
    

. 

Definition3.[16] The closure of a set S  is the smallest closed 

set containing S  i.e., the set of all points of closure of S . 

Definition4.[17] Let X  be an inner product space, a finite or 

infinite family of functions  
1j j

X

  is called an 

orthogonal set(denoted by i j  ) if ( , ) 0i j    when 

i   j,  and 0j  .  j  is called an orthonormal set if it is 

orthogonal and 1j ‖ ‖ . 

Definition5.[17] The set of functions  
1

n

j j



 is said to be 

linearly independent on [a,b] if 

1 1 2 2

1 2

0

[ , ], 0.

n n

n

c c c forall

x a b c c c

       

     
 

Proposition1.[17] If the set  
1

n

j j



 are non-zero pairwise 

orthogonal functions, then they are linearly independent. 
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III. RANDOM GALERKIN AND PETROV-GALERKIN 

METHOD 

A. Random Galerkin and Petrov-Galerkin Method for 
an Ordinary Differential Equation 

In the traditional variational methods, we seek an 

approximation solution in the form    

0( ) ( ) ( ), j :1, , n
n

n j j
j

U x U x c x       (1) 

where nU  is the approximation solution, jc  are the random 

undetermined coefficients and j  are the approximation 

functions of position x  in the domain of the problem, the 
random differential equation 

  

2
2 0 [0, ]

2

´
(0) ,  ( )

0 0

d U
U x L

dx

U M U L Q



     




 


(2) 

  is a second order bounded random variable, 0M  and 0Q  

are the known data of the problem. By substituting (1) into (2), 
we get the non-zero random residual function 

2 ( ) 2( , ) ( ) 0, j 1, ,n
2

d U xnR x c U x xj n
dx

      (3) 

Remark1.[18] An integrable function w  is called a weight 

function on the interval I  if ( ) 0w x   for all x I , but 

( ) 0w x   on any subinterval of I . 

We will construct the uniform randomly weighted-integral 
statement that is equivalent to (2) without including the 

boundary conditions by multiplying the random residual R  
by a weight function(i.e., test function) and integrating over the 
domain: 

0
0

L

w R dx   

2
2

20

( )
( ) ( ) 0

L
n

n

d U x
w x U x x dx

dx


 
    

 
 (4) 

( )w x  is the weight function and its choice differs from one 

method to another of the random weighted-residual 
methods(WRM). (4) is called the random weighted-integral 
statement that allows us to obtain n  linearly random algebraic 

equations for obtaining the random coefficients jc . In the 

weighted-residual methods, we choose 0  so that satisfies the 

actual boundary conditions of the problem and i  so that 

satisfies the homogeneous form of specified boundary 
conditions. Galerkin approach enables us to choose 

( )i iw x  , but in the Petrov-Galerkin method  

( )i iw x   (i.e., iw  is chosen to be different from i ) 

B. Random Galerkin and Petrov-Galerkin Method for 
A partial Differential Equation 

Consider the following random one-dimensional heat problem: 

   2

2

0

0 0

, ,
in 

( ,0) ( ) in 

(0, ) ,  ( , ) in 

U x t U x t
R T

t x

U x U x R

U t M U L t Q R T

  
  

 
 

     



(5) 

where 0U  is  function of a bounded random variable and 

0 0,M Q  are the data of the problem. The approximate 

solution will be in the form: 

0( , ) ( , ) ( ) ( ),  :1, ,
n

n j j
j

U x t U x t c t x j n      

and the residual will be in the form: 

   2

2

, ,
0n nU x t U x t

R
t x

 
  

 
 

The weighted-integral statement that is equivalent to (5) 
without including the boundary conditions is in the form (let 

[0, ]x L , where L  is the length of the rod): 

   2

20

, ,
( ) 0

L n nU x t U x t
w x dx

t x

  
     

 (6) 

(6) Enables us to obtain a solvable system of random ordinary 
differential equations.Substituting the approximation solution 

0( , ) ( ) ( )
n

n j j
j

U x t c t x    

into (6); choosing 0  so that satisfies the actualboundary 

conditions, taking i iw  (Galerkin Approach): 

� ψ�(x)
�

�

�
∂

∂t
�ψ� +�c�(t)ψ�(x)

�

�

�

−
∂�

∂x�
�ψ�

+�c�(t)ψ�(x)

�

�

�� dx = 0 

 
2

020 0

2

20

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0

n L L

j i j i
j

n L

j i j
j

c t x x dx x x dx
t x

c t x x dx
x
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 A	c��= F	c�+ K�  (7) 

where  

0
( ) ( )

L

ij i jA x x dx    

2

20
( ) ( )

L

ij i jF x x dx
x

 



  

2

020
( ) ( )

L

i iK x x dx
x

 



  

 1 2 n( ) ( ) c (t) c (t)
T

c t c t


    

c��(t) =	 1 2 n( ) c (t) c (t)
t t

T

c t
t

   
  

   
 

In case of Petrov-Galerkin method, we also choose 0  so that 

satisfies the actual boundary conditions, and taking i iw  . 

C. Random Least-Squares and Collocation Methods 

In the Least-Squares method, Minimizing the integral square 
of the random residual is the way to determine the random 

coefficients jc , we have: 

0
( ) 0

L

w x Rdx   

2

0
0

L

i

R
R dx

c




    

0
( , ) 0

L

j

i

R
R x c dx

c




   (8) 

In the random collocation method, the random residual is 
required to vanish at n  selected points (collocation points), 
we have 

( , ) 0,  for selected points.i j iR x c x (9) 

IV. CONVERGENCE OF THE RANDOM APPROXIMATION 

SOLUTIONS [19,20,21] 

A. Convergence of the Random Galerkin and 
Petrov-Galerkin Solutions 

We are eventually solving a matrix equation, either linear as 
the differential equation 

    A U f  

or nonlinear as 

     A U U f  

Where A  is a linear and symmetric positive-definite operator 

defined in a Hilbert space H  (i.e., 2L  space), u  is the 

unknown function and f  is the known function. A set of 

functions  n  is said to be linearly independent if 

0i i
i

c    

for 0ic  , then one function can be written in terms of the 

other functions. Completeness of the trial function is a very 
important property which is satisfied in a space if any function 

in that space can be expanded in terms of the set of functions 

i i
i

U c   ‖ ‖  

It is necessary to verify the completeness in a specified space, 

so the class of functions   ( )n D A  , where ( )D A   is 

the domain of definition. We state without proof two important 
theorems for the mean square convergence of the solutions. 

Theorem1.Suppose we have   ( )n D A  , and nA  is 

complete in a given Hilbert space H . Then,  n  is 

complete in in 
2
AL  space that is obtained by the closure of 

the domain ( )D A  

Theorem2.If the system coordinate of functions n  is an 

orthonormal, complete in 
2
AL ,and the random Galerkin and 

Petrov-Galerkin coefficients are bounded, then the 
approximation solution (1) is convergent in mean square. 

 

B. Convergence of the Random Least-Squares Solution 

We mentioned earlier that Minimizing the functional 

 
2

0
( ) 0

L

A U f dx   

is the core of the Least-Squares method. 

Theorem3.If the system coordinate of functions n  is 

complete in 
2
AL  and there exist a constant k  such that for 

any U  in the field of definition of the operator A   

AUKU   

, then the approximation solution of the Least-Squares method 
is convergent in mean square where the random least squares 
coefficients are bounded. 

V. CASE STUDIES 

Example 1. The following 1-d boundary value problem for 
linear ordinary random differential equation: 

2
2

2

´

0 [0,1]

(0) 0,  (1) 1

d U
U x

dx

U U



    




 

(10) 

where   is a positive second order bounded random variable. 

The exact solution 

    
 

 3/2 2sin 2sin 2 2cos 2
( )

2 2cos

x x x
U x

     

  

   
 

(11) 
Numerical Solution using the random Galerkin Method 
Starting from the random weighted-integral statement (4), we 

choose 0  so that satisfies the actual boundary conditions 

0 (0) 0   and ψ�
�(1) = 1  and i  so thatsatisfies the 

homogeneous form of specified boundary conditions 

(0) 0i   and ψ�
�(1) = 0 . Now, for 1,n   Choosing 
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0 x   and 
2

1 2x x    and taking 

2
1 1 2w x x    (Galerkin approach, i iw  ), we 

have  

     
2

2 2 2 21 2 2 2 01 10 2
d

x x x c x x x c x x x dx
dx


 

                    
 

 

     1
2 2 2

1 1
0

2 2 2 0x x c x c x x x dx     

1 1 1

3 5 4 3
(2 1) 0

10 12 3 10
c c c       

1

1 25 18

16 2 5
c






 



2
1 0 1 1

1 25 18
( ) ( ) (2 )

16 2 5
U x c x x x x


 




    


 

For 2n  , choosing 0 x  , 
2

1 2x x    and,

2 3
2

2

3
x x    and taking iw  ,i 1,2i  , we have 

� �
22x x ��−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x�� dx = 0 

 

� �
2 32

3
x x � �−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x�� dx = 0 

Generating two necessary and sufficient random algebraic 

equations to determine the random coefficients 1c  and 2c , we 

get 

7 3 1 5 4 3( ) (2 1) 02 2 1 2 1 1
45 10 3 12 3 10

c c c c c c         

 

1 4 2 7 1 4
( ) (2 1) 0

21 45 15 60 3 452 2 1 2 1 1
c c c c c c         

 

 
 

 

 

2 0 1 1 2 2

2 2

2

2 2 3

2

( ) ( ) ( )

39 1838 1176 (2 )

2 65 1692 3780

2
21 11 112 100 ( )

3

2 65 1692 3780

U x c x c x

x x
x

x x

  

 

 

 

 

  

  
 

 

  


 

 

For 3n  ,choosing 0 x  , 
2

1 2x x   ,

2 3
2

2

3
x x    and 

3 4
3

2 1

3 2
x x    and 

taking iw  ,i 1,2,3i  , we have 

� �
22x x � �−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x�� + c� �

2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

 

� �x� −
2

3
x�� �−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x�� + c� �

2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

 

� �
2

3
x� −

1

2
x�� �−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x�� + c� �

2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

 
Generating three necessary and sufficient random algebraic 

equations to determine the random coefficients 1 2,c c  and 3c , 

 
 

 

 

3 0 1 1 2 2 3 3

3 2 2

3 2

3 2 2 3

3 2

( ) ( ) ( ) ( )

231 16742 342384 225792 (2 )

16 22 2079 39312 84672

2
21 3 36 1988 1344 ( )

3

2 22 2079 39312 84672

U x c x c x c x

x x
x

x x
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3 2 3 4

3 2

2 1
21 19 752 1668 2688 ( )

3 2

4 22 2079 39312 84672

x x  

  

   


  

 
 
 

 
Fig 1: Random approximation and Exact solution with 

β	~	Beta	distribution 
 
 
 

 

 
Fig 2: Random approximation and exact solution with 

β	~	Binomial	distribution 

 
Fig 3: Random approximation and exact solution with 

β	~	Weibull	distribution 
 

 
Numerical Solution by Using theRandom Petrov-Galerkin 
Method. 

For 1,n   Choosing 0 x  , 
2

1 2x x    and taking 

iw   to be different from i , 1w x  

     
2

1
2 2 2

1 120
2 2 0

d
x x c x x x c x x x dx

dx


 
              

 


 

     1
2 2

1 1
0

2 2 0x c x c x x x dx      

1 1 1

1 1 1
(2 1) 0

4 3 4
c c c       

1

4 3

5 12
c









 

2
1 0 1 1

4 3
( ) ( ) (2 )

5 12
U x c x x x x


 




    


 

For 2n  , choosing 0 x  , 
2

1 2x x    and 

2 3
2

2

3
x x    and taking 1w x , 

2
2w x , we have 

� (x) �−
d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x���

�

�

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x�� dx = 0 

� (x�) �−
d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x���

�

�

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x�� dx = 0 
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Generating two necessary and sufficient random algebraic 

equations to determine the random coefficients 1c  and 2c , we 

get 

2 2 1 2 1 1

2 1 1 1 1
( ) (2 1) 0

15 4 3 4 4
c c c c c c         

 

2 2 1 2 1 1

1 1 1 1 2 1
( ) (2 1) 0

9 5 3 4 3 5
c c c c c c         

 

 
 

 
 

( ) ( ) ( )
2 0 1 1 2 2

22 2 32 2 15 3 26 24 ( )5 288 180 (2 )
3

2 22 11 270 600 2 11 270 600

U x c x c x

x xx x
x

  

  

   

  

    
  

   

 

For 3n  ,choosing 0 x  , 
2

1 2x x   ,

2 3
2

2

3
x x    and 

3 4
3

2 1

3 2
x x    andtaking 

1w x , 
2

2w x , 
3

3w x , we have 

� (x) �−
d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x��

�

�

+ c� �
2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

� (x�) �−
d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x��

�

�

+ c� �
2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

� (x�) �−
d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x��

�

�

+ c� �
2

3
x� −

1

2
x���

− β�x + c�(2x − x�) + c� �x
� −

2

3
x��

+ c� �
2

3
x� −

1

2
x��� + x�� dx = 0 

Generating three necessary and sufficient random algebraic 
equations to determine the random coefficients 

1 1 2 2 1 1 1 1 1
( ) ( ) (2 1) 03 2 3 3 2 1 2 1 1

12 5 3 3 6 4 3 3 4
c c c c c c c c c              

 
1 1 2 2 1 1 1 1 2 1

( ) ( ) (2 1) 03 2 3 3 2 1 2 1 1
14 6 3 3 5 5 3 4 3 5

c c c c c c c c c              

 
1 1 2 2 1 1 3 1 1 1

( ) ( ) (2 1) 03 2 3 3 2 1 2 1 1
16 7 3 3 5 6 10 5 2 6

c c c c c c c c c              

 
( ) ( ) ( ) ( )3 0 1 1 2 2 3 3U x c x c x c x        

 

 
 

 
 

3 2 229 1784 35700 23520 (2 )

3 22 19 1734 32760 70560

23 2 2 37 13 34 4920 3360 ( )
3

3 22 19 1734 32760 70560

x x
x

x x

  

  

  

  

   
 

  

   


  

  2 13 2 3 456 2 64 135 210 ( )
3 2

3 219 1734 32760 70560

x x  

  

   


  
 

 

 
Fig 4: Random approximation and exact solution with 

β	~	Beta	distribution 

 

Fig 5: Random approximation and Exact solution with 

β	~	Binomial	distribution  
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Fig 6: Random approximation and Exact solution with 
β	~	Weibull	distribution 

 
Numerical Solution using the random Least-Squares 
Method 

For 1,n   Choosing 0 x   and 
2

1 2x x    and 

taking i

i

R
w

c





 (i.e., 1

1

R
w

c





 ) 

 

     
2

2 2 2 22 2 2 21 1 121

d
w x c x x x c x x x x x

c dx
 

                   
     
 

 

     
2

2 2 2 21 2 2 2 2 01 10 2
d

x x x c x x x c x x x dx
dx

 
 

                           

 

   2 2 21 2 2 2 2 01 10 x x c x c x x x d x                    

 
3 5 2 22( 1) ( 2 1) ( 2 1) 4 01 1 1 1 1

10 12 % 3 3
c c c c c             

 
2

1 2

1 25 78 40

16 2 10 15
c

 

 

 
 

 
 

 

2
2

1 0 1 1 2

25 78 40
( ) ( ) (2 )

16 2 10 15
U x c x x x x

 
 

 

 
    

 

For 2n  ,choosing 0 x  , 
2

1 2x x    and 

2 3
2

2

3
x x    and taking ,i

i

R
w

c





1,2i  , we have 

w� =
∂

∂c�
�−

d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x��

= 2 − β(2x − x�) 

 

� �2 − β(2x − x�)� �−
d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x�� dx = 0 

 

w� =
∂

∂c�
�−

d�

dx�
�x + c�(2x − x�) + c� �x

� −
2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x��

= 4x − 2− β�x� −
2

3
x�� 

 

� �4x − 2− β�x� −
2

3
x����−

d�

dx�
�x + c�(2x − x�)

�

�

+ c� �x
� −

2

3
x���

− β�x + c�(2x − x�)

+ c� �x
� −

2

3
x��� + x��dx = 0 

Generating two necessary and sufficient random algebraic 

equations to determine the random coefficients 1c  and 2c ,  

2 2 2
2 1 2 1 1

13 8 13 2 5 8 2
4 0

90 15 10 3 12 3 3
c c c c c            

 

2 2 2
2 1 2 1 1

13 13 19 4 7 2 4 1
0

315 90 45 15 60 3 3 3
c c c c c            

 

 
 

 
 

( ) ( ) ( )
2 0 1 1 2 2

4 3 2 239 2948 68052 191520 100800 (2 )

4 3 22 65 3384 64800 262080 302400

24 3 2 2 321 11 382 4360 11520 7200 ( )
3

4 3 22 65 3384 64800 262080 302400

U x c x c x

x x
x

x x

  

   

   

   

   

  

    
 

   

    


   

 

For 3n  , choosing 0 x  , 
2

1 2x x   ,

2 3
2

2

3
x x    and 

3 4
3

2 1

3 2
x x    and 

taking ,i

i

R
w

c





1,2,3i  we have

 

2( , ) 2 ( 4 2) ( 6 4 )
1 2 3

2 2 12 2 3 3 4 22
1 2 33 3 2

R x c c c x c x x
i

x c x x c x x c x x x
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1 2 2w x x    



 
The Variational Methods for Solving Random Models 

 

Copyright © 2017. Innovative Research Publications. All Rights Reserve  221 
 

 

2 3
2

2
4 2 %

3
w x x x

 
    

 
 

2 3 4
3

2 1
6 4

3 2
w x x x x

 
    

 
 

1

0
( , ) 0,  1, 2,3i iw R x c dx i  (12) 

Generates three necessary and sufficient random algebraic 
equations to determine the random coefficients 
19 13 8 4 2 8 5 13 22 2 2 2 4 03 2 1 3 2 1 1
315 90 15 15 3 3 12 10 3

c c c c c c c                

 
1 13 13 2 4 2 7 19 2 4 12 2 2 2

0
3 2 1 3 2 1 3 256 315 90 15 15 3 60 45 3 3 3
c c c c c c c c                 

 
1 1 19 8 2 4 1 13 8 2 12 2 2 2

0
3 2 1 3 2 1 3 2126 56 315 105 15 15 20 63 15 3 5
c c c c c c c c                 

 

So, we can find the value of the coefficients and have 3U . 

 
 

 
Fig 7: Random approximation and exact solution with 

β	~	Beta	distribution 

 
Fig 8: Random approximation and exact solution with 

β	~	Binomial	distribution 

 
Fig 9: Random approximation and exact solution with 

β	~	Weibull	distribution 
 
Numerical Solution using the random Collocation Method 
 

For 1,n   choosing 0 x   and 
2

1 2x x   ,and 

choosing 
1

3
x   as a collocation point, we have: 

     
2

2 2 2
1 12

2 2
d

R x c x x x c x x x
dx

       

Evaluating the random residual at this collocation point and 
setting it equal to zero, 

1 1

1 1 5
( ) 2 0
3 3 9

R c c
 

    
 

 

1

3 1

5 18
c






 


 

2
1 0 1 1

3 1
( ) ( ) (2 )

5 18
U x c x x x x


 




    


 

For 2n  , choosing 0 x  , 
2

1 2x x    and 

2 3
2

2
%

3
x x   , and choosing 

1

3
x   and 

1

2
 as 

thecollocation points, we have: 

 

 

2

2 2 3

1 22

2 2 3 2

1 2

2
2

3

2
2 0

3

d
R x c x x c x x

dx

x c x x c x x x

     

      

  
  
  

  
  
  

 
Evaluating the random residuals at these collocation points and 
set them equal to zero, we will get the two necessary and 
sufficient random algebraic equations todetermine the 
coefficients 

1 2 1 2

1 2 1 5 7 1
( ) 2 0
3 3 3 9 81 9

R c c c c          
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1 1 2

1 1 3 1 1
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2
9 14 10 ( )4 107 54 (2 ) 3
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For 3n  , choosing 0 x  , 
2

1 2x x   ,

2 3
2

2

3
x x    and 

3 4
3

2 1

3 2
x x   , andchoosing 

1

3
x  ,

1

2
 and 

2

3
 as the collocationpoints, we have 
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1 2 3
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2 2 1
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Fig 10: Random approximation and exact solution with 

β	~	Beta	distribution 

 
Fig 11: Random approximation and exact solution with 

β	~	Binomial	distribution 
 
 

 
Fig 12: Random approximation and exact solution with 

β	~	Weibull	distribution 
 

Example 2.The following random one dimensional 
heat problem: 
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   2

2

, ,
in 

( , 0) sin( ) in 

(0, ) 0,  ( , ) 0 in 

u x t u x t
R T

t x

u x x R

u t u L t R T

 

 
  

 

 

    









(13) 

where  is a second bounded order random variable. 

The exact solution: 
2

( , ) sin( )tu x t e x   (14) 

Numerical Solution using the random Galerkin Method 

Choosing 0 0   so that satisfies the actualboundary 

conditions 0 (0) 0   and 0 (1) 0  , taking i iw 

(Galerkin)where (1 )j
j x x    so that satisfies the 

homogeneous form of boundary conditions. 

For 1,n  1 1 (1 )w x x     (Galerkin Approach) and 

assuming L=1cm,we have: 

 
1 2

0

2
1

20

1

(1 ) (1 )

i j
ij

i j
ij

A x x dx

F x x x x dx
x

 


    




 

By (7), we get 

1 1

1 1
( ) ( )

30 3
c t c t

t


 


(15) 

(15) is an ordinary differential equation, for solving this one we 
needthe initial condition of the random coefficients vector at 

0t  . 

1
1

0
(0) sin( ) ( )ic A x x dx  


   

The initial condition of the previous random ordinary 
differential equation is  

1
2

0
(0) 30 sin( )( ) 3.8655c x x x dx  



    

The solution subject to the initial condition is: 

 10 2
1( , ) 3.8655 tu x t e x x    

For 2 :n   

1 1 1 1

30 60 3 6
,

1 1 1 2

60 105 6 15

A F
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( )30 60 3 6

( )1 1 1 2
( )
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c tt
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t




 





     
       
       

      
          

 

1
1

0
(0) sin( ) ( )

160 140

0.1288 3.86553 3

140 280 0.0644 0

3 3

i
c A x x dx  

 






 



 
     
     

    
  



 

Solving the system of an ordinary random differential 
equations subject to the random initial condition of coefficients 
vector, one gets 

 10 2
2 ( , ) 3.8779 tu x t e x x    

 
Fig 13: Random approximation and exact solution with 

β	~	N(1.0,2.0) 

|

 
Fig 14: Random approximation and Exact solution with 

β	~	Beta (1.0,1.0) 
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Fig 15: Random approximation and exact solution with 

β	~	Poisson (0.5) 

Numerical Solution using the random Petrov-Galerkin 
Method 

Choosing 0 0   so that satisfies the actual boundary 

conditions 0 (0) 0   and 0 (1) 0  , taking i iw  . 

Choosing 
j

j x  to be different from approximation 

functions and (1 )j
j x x    

 

 
1

0

2
1

20

1

(1 )

i j
ij

i j
ij

A x x dx

F x x x dx
x

 


   




 

For 1,n  1 (1 )x x   , 1w x  and assuming L=1 

cm,we have 

1 1

1
( ) ( )

12
c t c t

t


 


(7) 

(16) is an ordinary differential equation, for solving this one we 

needthe initial condition of coefficients vector at 0t  . 

1
1

0
(0) sin( ) ( )ic A x x dx  


   

The initial condition of the previous random ordinary 
differential equationis : 

1

0
(0) 12 sin( )( ) 3.8181c x x dx  



   

The solution subject to the initial condition is: 

 12 2
1( , ) 3.8181 tu x t e x x    

For 2 :n   
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12 20
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20 30
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( ) 3 6

20 30

c t
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1
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0
(0) sin( ) ( )

120 180 0.3182 4.0980

180 300 0.1893% 0.4670

ic A x x dx  

 




     
            



Solving the system of ordinary random differential equations 
subject to the random initial condition of coefficients vector, 
one gets, 

  
  

60 10 2
2

60 10 2 3

( , ) 0.5394 4.6374

0.5394 1.5458

t t

t t

u x t e e x x

e e x x

 

 

 

 

   

  

 
Fig 16: Random approximation and exact solution with 

β	~	N(1.0,2.0) 
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Fig 15: Random approximation and exact solution with 

β	~	Poisson (0.5) 

VI. CONCLUSION 

We have discussed in this work that if we want to use the 
variational methods for solving random models, the 
randomness input must be bounded and this is shown by some 
numerical case studies. 
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