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The Variational Methods for Solving
Random Models

ML.A. Sohaly, M.T. Yassen, .M. Elbaz

Abstract: This paper studies the solutions of variational
methods for random ordinary (partial) dillerential equations in
L2—space. These methods are called Galerkin method,
Petrov-Galerkin method, Least-Squares method and Collocation
method. Some basic properties of these methods where applying
on random problems will be shown throughout some numerical
examples.
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I. INTRODUCTION

Deriving the random governing dynamics of physical

processes is a complicated task in itself; finding exact solutions
to the governing random ordinary (partial) differential
equations is usually even more formidable. When trying to
solve such equations, approximate methods of analysis provide
a convenient, alternative method for finding solutions
[1,2,3,4,5,6] Four such methods, the Galerkin method,
Petrov-Galerkin  method, Least-Squares method and
Collocation method, are typically used in our paper and are
referred to as classical variational methods [7,8,9,10,11,12,13].
Various variational methods differ from each other in the
choice of integral form, weighting functions, and/or
approximating functions [7,11].
Classical variational methods suffer from the disadvantage of
the difficulty associated with proper construction of the
approximating functions for arbitrary domains. This paper is
organized as follows, Section 2, deals with preliminaries of
some points used in the paper. Section 3, deals with solving a
random ordinary and partial differential equation using the
variational methods. Section 4, deals with the convergence of
the approximation solutions. Section 5 is devoted to some
numerical examples.

II. PRELIMINARIES

Definition1. [14] A Hilbert space H is a real or complex
inner product space that is also complete metric space with
respect to the distance function induced by the inner product,

fll = V(£.£)

An example of a Hilbert space is the L, —space which is the
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space of all functions /* : R — R such that, the integral of

f 2 over the whole real line is finite,

(f.g)=]"f(x)gx)dx

Hilbert spaces constitute the class of infinite-dimensional
vector spaces that are most often used and that are the most
important as far as applications are concerned. They are the
natural extension of the concept of a finite-dimensional vector
space with a scalar product.

Definition2.[15] A real random variable X on a probability
space (2, 0 , P ) and satisfying the property that

E[[X[" | <0

is called second order random variable (2-r.v.) where, E [ ]
denotes the expectation value operator. If X € L,(€2), then

the L, norm is defined as

1

= B[ ][

Definition3.[16] The closure of a set S is the smallest closed
set containing S i.e., the set of all points of closure of S .
Definition4.[17] Let X be an inner product space, a finite or

infinite family of functions {l// j} c X is called an

J=1

orthogonal set(denoted by ¥, L) if (y,,¥;) =0 when

1# j,and iy, # 0. {Wj} is called an orthonormal set if it is
orthogonal and ||l// f 1.

Definition5.[17] The set of functions {l// ! }n is said to be

Jj=1
linearly independent on [a,b] if
ey, e, +-+e,w,+=0 forall

x €la,bl,c,=c,==c,

=0.
Proposition1.[17] If the set {l// ; }n | are non-zero pairwise
j=

orthogonal functions, then they are linearly independent.
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III. RANDOM GALERKIN AND PETROV-GALERKIN
METHOD

A. Random Galerkin and Petrov-Galerkin Method for
an Ordinary Differential Equation

In the traditional variational methods, we seek an

approximation solution in the form
U)=U,(x) =y, + Y c,y;(x),j: L0
J

where U | is the approximation solution, ¢ ; are the random

undetermined coefficients and Y ; are the approximation

functions of position X in the domain of the problem, the
random differential equation

2
d g—ﬁU+x2:O [0,L]x Q)
dx (2)

[ is a second order bounded random variable, M ; and Q,

are the known data of the problem. By substituting (1) into (2),
we get the non-zero random residual function

2
d Un(x)

dx 2
Remark1.[18] An integrable function W is called a weight
function on the interval  if w (x)>0 for all x €/ , but

R(x.c;)= ~BU,, (x)+x 220,510 3)

w (x ) # 0 on any subinterval of [ .

We will construct the uniform randomly weighted-integral
statement that is equivalent to (2) without including the

boundary conditions by multiplying the random residual R
by a weight function(i.e., test function) and integrating over the
domain:

rwR dx =0

[Tw ()( v 4U,x) ﬂUn(x)+x2jdx=O(4)

w (x) is the weight function and its choice differs from one

method to another of the random weighted-residual
methods(WRM). (4) is called the random weighted-integral
statement that allows us to obtain 7 linearly random algebraic

equations for obtaining the random coefficients ¢ ;. In the
weighted-residual methods, we choose 1/, so that satisfies the

actual boundary conditions of the problem and y/; so that

satisfies the homogeneous form of specified boundary
conditions. Galerkin approach enables us to choose

w,(x)=y, , but in the Petrov-Galerkin method

w,(x)#y, (ie, W, is chosen to be different from v/, )

B. Random Galerkin and Petrov-Galerkin Method for
A partial Differential Equation

Consider the following random one-dimensional heat problem:

oU (x,t) oU (x,t) .
= . in R xT xQ
ot ox
Ux,00=U,(x) mRxQ (5

U@,t)=M,, U(L,t)=0Q, in0RxT xQ

where U o is function of a bounded random variable and

M ,,0, are the data of the problem. The approximate

solution will be in the form:
U,t)=U, (x.,t)=y, +icj @y, (x),j 10
and the residual will be in the fojrm:
2
ou, (x,t)_@ U, (x.t) 20

ot ox?

The weighted-integral statement that is equivalent to (5)
without including the boundary conditions is in the form (let

x €[0,L], where L is the length of the rod):

J-OLW (x)[aU" (x,t)_@ U, (x,t)jdx _0)

R =

ot ox*

(6) Enables us to obtain a solvable system of random ordinary
differential equations.Substituting the approximation solution

U, (e0) =, + Y, Oy, ()

into (6); choosing ¥/, so that satisfies the actualboundary

conditions, taking W, =, (Galerkin Approach):

[woo| 5 ¢0+Zc<t>¢,<x>

62
B Ui

£ gOWE)| |ax=0
j

a—iicj(t)j: W, (X)), (x )dx jl//,(x) Zl/lo(x)dx

e, Of v

l// (x)dx =0
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AT =FTt+K; (7)

where

4, =] v, (x )l//-(x )

F =2 s

K =['v (x)%wo(x \d
¢, (t)

%cnmj

In case of Petrov-Galerkin method, we also choose ¥/, so that

ct)=(c,t) (1)
e[ 2 9
c(t)—(atcl(t) atcz(t)

satisfies the actual boundary conditions, and taking W, # ¥/, .

C. Random Least-Squares and Collocation Methods

In the Least-Squares method, Minimizing the integral square
of the random residual is the way to determine the random

coefficients ¢ jaowe have:

jOLw (x)Rdx =0

a—RJ'Ldex =0
c. 0

I —R(x c;)dx =0 (8)

In the random collocation method, the random residual is
required to vanish at 7 selected points (collocation points),
we have

R(x,,c;)=0, for x, selected points. (9)

IV. CONVERGENCE OF THE RANDOM APPROXIMATION
SOLUTIONS [19,20,21]

A. Convergence of the Random Galerkin and
Petrov-Galerkin Solutions

We are eventually solving a matrix equation, either linear as
the differential equation

MU=
MU=

Where A is a linear and symmetric positive-definite operator
defined in a Hilbert space H (ie., L,

or nonlinear as

— space), U is the
unknown function and f is the known function. A set of

functions {l//n } is said to be linearly independent if
ZciV/i =0

forc, = 0, then one function can be written in terms of the

other functions. Completeness of the trial function is a very
important property which is satisfied in a space if any function

ISSN: 2347-5552, Volume 5, Issue 2, March- 2017

in that space can be expanded in terms of the set of functions
U= cw, ke
i

It is necessary to verify the completeness in a specified space,
so the class of functions {l//n } eD(A), where D(A)

the domain of definition. We state without proof two important
theorems for the mean square convergence of the solutions.

lﬂn}eD(A), and Ay, is

Theorem1.Suppose we have {
complete in a given Hilbert space H . Then, {l//n} is

complete in in Lj —space that is obtained by the closure of
the domain D (A4)
Theorem2.If the system coordinate of functions i/, is an

orthonormal, complete in Lj ,and the random Galerkin and

Petrov-Galerkin  coefficients are bounded, then the
approximation solution (1) is convergent in mean square.

B. Convergence of the Random Least-Squares Solution
We mentioned earlier that Minimizing the functional

j (AU)~f Ydx =

is the core of the Least-Squares method.
Theorem3.If the system coordinate of functions i/, is

complete in Li and there exist a constant K such that for
any U in the field of definition of the operator A
[u] < x]4u]

, then the approximation solution of the Least-Squares method
is convergent in mean square where the random least squares
coefficients are bounded.

V. CASE STUDIES

Example 1. The following 1-d boundary value problem for
linear ordinary random differential equation:

2
v —=pU +x2=0 [0,1]xQ
dx? (10)

U0)=0, U)=1

where [ is a positive second order bounded random variable.

The exact solution

sm(\/ﬁx )(ﬁ3/2+2 sin(\/ﬁ)—Z\/ﬁ) . 2cos(\/ﬁx )+ﬁ’x 2
/32 cos(\/ﬁ) B ﬁz

U(x)=

an
Numerical Solution using the random Galerkin Method
Starting from the random weighted-integral statement (4), we

choose /, so that satisfies the actual boundary conditions
¥,(0)=0 and Y5(1) =1 and y, so thatsatisfies the
homogeneous form of specified boundary conditions

w,(0)=0 and Yj(1) =0. Now, for n =1, Choosing
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W,=X and W, =2x —x’ and taking U,(x) =y, +ew,(x)+c,p,(x)
w, =y, =2x —x° (Galerkin approach, w, =y, ), we (39,32 —1838ﬂ+1176)(2x -x?)
have -t

) 2(658° ~16928+3780)

foces?[ el o )”d

21(118° -1128+100) (x * —§x3)

2(654% -16928+3780
j1(2x —xz)(Zc ﬂ(x +c 2x -x? ) ( p p )
0 3 3 For n=3 ,choosing w,=x , W, =2x -x?,
—c, - 2 +1+ +—=0
10712 ST 3970 W, =x =2 and y, = 2x — 1 x* and
c 125,6’—18 » 3 . 1233 b 2
= S A~ s = t ;= [ l: b b b
1 16 25-5 amg:vl V., p, we have
- 2x —x )| ——|x+ ¢ (2x — x?
U=y repney=x - L2BT8 0 o) [, (x=x*) (gl i
16 25-5 2_2.3 25 1,
) ) +c2(x ——x)+c3<—x — =X )]
For n =2, choosing ¥, =x , i, =2x —x " and, 3 3 2 )
2 —B[x+c1(2x—x2)+c2(x2——x3)
l//zzx —Ex andtakmgw —Wn =1,2, we have 3

2 1
J»1(2x _X2)<—dd—22[x+ e (2x— x) +c3 (§x3 _EX4)] +x2)dx =0
0 X

2 1 5 2 5 d2
+e <X2 _§X3)] j(; (x —3X ) o2 [X+C1(2X—X )
2 2 1
-B [X+ ¢ (2x — x?) to, (Xz —§x3) Yo <§X3 _Ex4)]
2_ 23 2 2
+C2<X —§X) +x°Jdx=0 —B[x+c1(2x—x2)+c2(x2—§x3)

. 5 - +c3 (éx?’ —%x“)] +x2) dx=0
f<x2_§x3>< 012[x-i-c1(2x—x)
0

L2 1 d?

2 s B ) N R 2
+c2<xz—§x3)] -fo <3X 2X)< dz[x+c1(2x x4)
—Blx+c,2x—x? +c (xz —Ex3) +c <EX3 —lx“)]

x+c(2x—x 2 3 3(3 >

2 2 2 2.3

+c2<x2—§x3)]+x2)dx=0 —B[X+c1(2x—x)+c2(x —§x)
2 1
Generating two necessary and sufficient random algebraic + 5 (§x3 — EX4)] + XZ) dx=0

equations to determine the random coefficients ¢, and ¢, , we

get Generating three necessary and sufficient random algebraic

Ec2 pB- 0 ﬂ(cz _c1)+{ 2~ ﬂ(2c1+1)+ﬂc1+136:() equations to determine the random coefficients ¢,,c, and c,,
Us(x) =y, ey (00) +eyp, () e (x)

(2318 ~16742/8" + 3423844 225792) (2x —x?)

16(228° ~20798° +393128-84672)

1 4 2 7 1 4
—cc f—— +—c —— (2 +)+—c +—=0 =
2159457, 15 60 AE S s =

21(34° +36/8 ~19883-+1344) x —ix 5

2(2258° -2079p° +393123-84672)
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21(198° - 7528 +1668ﬂ—2688)(§x3 —;x4)

4(22° ~2079° +393125 -84672) n

=——hag )
""" Calerkin_1

— — Calerkin_2 00 l
= = Calerkin_3

=it

""" Galerkin_1
= = Calerkin_2
== Calerkin 3

015

020-

— baa = ban

""" Galerkin_1 e Calerkin 1
— = Calrkin 2| 04 — = Galerkn 2 %
— = Galerkin_3 == Calerkin_3

v 035- —

“ B Welbul 4 5905) B Well 23159

02 ‘ 0 Fig 3: Random approximation and exact solution with
B ~ Weibull distribution

Numerical Solution by Using theRandom Petrov-Galerkin
p~Beta)25) B~Bea(l) Method.
Fig 1: Random approximation and Exact solution with For n =1, Choosing Wo=X, ¥, =2X —X 2 and taking

B ~ Beta distribution
w, to be different from ¥, , w, =Xx

HEENE

L
/ 1 1()2—/3+2—2+2d—0
0 X Cy X TC X —X X X =
13 /
i 1cﬁ 1,8(2c +1)+c +1—0
4! 3 1 17y
15
/ — Badt 08 — Biat cl = 54ﬂ—132
---- Calerkin_L e Galerkin 1 —
0 — = Calerkin_2 = = Galerkin 2 ﬁ 4ﬂ 3
— = Calerkin 3 == (alerkin 3 _
= o 5
/ UI(X):V/O_'-CIWI(X):X_Sﬁ—l?_(zx -x7)
i / 0 For n=2 , choosing w,=x , ¥, =2x —x? and
v 2 _ 2 3 d taki _ 2 h
) - e V,=X gx andtakingw | =x ,w, =X~ , we have
I YO T S 01 0 05 08 1
ﬁ~;mamlal[062i) BiEmwmal[lD) 1 d2 2
Fig 2- S : . ®(——=x+c(@x=x) +c, (x> —=x3
ig 2: Random approximation and exact solution with o dx2 1 2 3

B ~ Binomial distribution
-B [x +¢;(2x — x?)

2
+c, (XZ - §x3)] + xz) dx=0

JOI(XZ) (—dd—xzz [X +c(2x—xH) + ¢, (xz - §x3)]

-B [X+ c;(2x — x?)

2
+c, <x2 - §x3)] + XZ) dx=0
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Generating two necessary and sufficient random algebraic 1 1 2 2 1 1 1 1 1
e . 4 . s 3B B (—Sca+7e3)r—c3——pBlea—cp)+o e B2er+)+e +=0
equations to determine the random coefficients ¢, and ¢, , we 12 5373 6" 4 373 4
get X
3ﬁ ﬁ(ﬁcz+ C3)+ 56375 ﬁ(02*01)+ szfﬁ(201+1)+ P 0
2 1 1 1 1
—,f——pc,—¢)+zc,—— B2, + )+, +—=0
5 4 3 4 4

1 1 2 2 1 1 3 1 1 1
—c3f—f(—=cr+—c3)+—=c3— —1)+—p—PB2c1+H)+—c1+—=0
L3P P(5eatzea)toes— Blea—en)ty e AQer+er+

1 1 1 1 2 1 U3 (x)=po+ciw (x )+eapa (x )+e3w3(x)
gczﬂ_gﬂ(cz _cl)+§cz _Zﬂ(zc1 +1)+§c1 +§ =0

(29,83—1784,82+35700,B—23520)(2x x2)

=X —
2
Uy () =Wy +qy (6) 4 eqpy (6) 2(1953—17345 +32760ﬂ—70560)
2 2 2 223 3,24 22 2.2 2 3
5p2-288p+180)(2x ) 1534726424 ) 2T %) 71133+348%-4920 8+3360 | (x )
=X — — +
2(1 182-270 ﬂ+600) 2(1 1 /32—270/?+600) 2(19ﬁ3—1734ﬂz+327605—70560)
(m —64 824135 5— 210)(§ 3 lx )
For n :3,choosing (//0 =X, (//1 = 2x —-X 2 s 19ﬂ3*1734ﬂ +32760ﬂ*70560
2 2 3 2.5 14 .
W,=X"——x"and ¥, =—X  ——X andtaking 0
3 372 "
w,=x, W2=x2,w3=x3,wehave i } 0
d? 2 ) 08 ‘ :
f (x)< [x+c1(2x—x2) +c, (x —=x ) “ ,
3 04 o Eéi‘ = Exadt
2 1 ——rp| 04 L
t6s <§X3 B EX4)] v / == 03 2

5
-B [x +c(2x—x%) +c, (xz - §x3) ”

2 1
+ ¢y <§x3 — EX4>] + xz)dx =0

p~Betal0.25) p~Beta(0 )
d2 2 Fig 4: Random approximation and exact solution with
f x?) < [x +0,2x—x)) +c, <x -3X ) B ~ Beta distribution

2 1
+o (33 -3¢ 2 720
- B[x+c1(2x—x2) +c, (xz —§x3) o

2 1
+c3 <§X3 - EX4>] + xz)dx =0

f(X2)< d” [X+C1(2X—X2)+C2< —§x3) " / 0

2 1 0 02 04 06 08 1
“3 o4 . R
+ Cs (3 X 2 X )] f~Binomial(0.615) p~Binomial(10)
—B[x+c (2x—x¥)+c (xz —Exz’)
1 2 3 Fig 5: Random approximation and Exact solution with
+c5 <EX3 - 1)(“)] + XZ) dx=0 8 ~ Binomial distribution
3 2

Generating three necessary and sufficient random algebraic
equations to determine the random coefficients
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04 3 : s b
) \
|
05 ) \
\ 00 \
.. A

06 N
\\\___, 02 ¥ 4
B~ Weibul(h 905) B~ Webul9 3135)

Fig 6: Random approximation and Exact solution with
B ~ Weibull distribution

Numerical Solution using the random Least-Squares
Method

For nn =1, Choosing i, =x and y, =2x —x * and
taki @ OR )
akingw, =— (ie, w, =—

oc, ' o,

1

ai[ @’ (x+cl(2x xz))ﬁ(xwl(Zxxz)j+x2J:2ﬁ(2xx2)

g@ﬁhﬁqliquhﬂq}dﬁ4hﬁq};Fﬁ
[(1)(27ﬂ(2x —x z)j{Zleﬂ(x +c1(2x —x 2)j+x z}dx ~0

- B+ pP
o - 1255 -785+40
16 282 -108+15
258 —783+40

-x?)

U(x) =y, +eyp(x)=x 16(2ﬂ —10,34'15)

For n =2 choosing ¥/, =x , , =2x —x * and
2 2 3 . .
W, =X —gx and taking w, = ——, [ =1,2, we have
o[ & 2,
wlza—C1 dz[x+c1(2x—x)+c2(x —3X )]

-B [X + ¢, (2x — x2)

2
+op (x =500+ <)

=2-B2x—x?)

ISSN: 2347-5552, Volume 5, Issue 2, March- 2017

[x + ¢, (2x —x?)

f (2-Bl2x— xz))(

2
refe-2e)

-B [X + ¢, (2x — x?)

2
+ ¢, (xz - §X3)] + x2

0 d? 5 2
w2=a—CZ dz[x+c1(2x—x)+c2(x _EX)]

-B [X+ ¢, (2x — x?)

2
v (= 50)] )

2
=4x—2—B(x2—§x3)

J: (4)(—2 - B(XZ —§x3)> <_dd_x22[x+ c;(2x — x?)
o -2)

-B [x + ¢, (2x — x2)
+c, (XZ —§x3)] + x2

Generating two necessary and sufficient random algebraic

)dsz

)dx=0

equations to determine the random coefficients ¢, and ¢, ,

e s e e +5 =0

1

4 7,2 4
5 +—f —=cf+—c+==
315 Zﬂz lﬂz 5 Zﬂ 6()ﬁz 3 lﬂ 3 1

Uz(x) =¥ +Cl'//1(x)+62‘//2(x)

(39 42948 83 +68052 52 191520 ﬂ+100800)(2x <3

=x —

2(65 543384587 16480082 7262080ﬁ+302400)

2 1(1 15438283 +4360 211520 /3+7200)(x 2—% 3

2(65 54338487 +64800 ﬁ27262080ﬂ+302400)

2
=X,y =2x —x

1
P —x"and
2

For n =3, choosing ¥/,

_x2_2x3 d ==
v, = 3 and ¥/, =

takingw , = ——, i =1,2,3 we have

RGc,)=2y ¢ +2) (—6x2+4x)

—f| x +c +c x2—gx3 +c gx3—lx4 +x2
1 2 3 337 2

w, =2—ﬂ(2x —xz)

2x—x2
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w2=4x—2—ﬂ(x2—%§x3]
w, =6x"—4x —ﬁ(§x3—lx4j

[w RGx.c)dx =0, i =1,2,3012)

Generates three necessary and sufficient random algebraic
equations to determine the random coefficients

53/?2 13 2ﬂ+ 1ﬂ~3ﬂ

o

Seap—aaprl R prie

+f—0

7
3152 ﬂz 53ﬂ 52ﬂ31ﬂ ﬁz

1
c+c+—0
153 325

1
1263 "% CZﬁZ 3151ﬁ2 1053ﬂ152ﬂ151ﬂ ﬁz ’B

So, we can find the value of the coefficients and have U 5-

B~Beta(0.25)
Fig 7: Random approximation and exact solution with
B ~ Beta distribution

p-Betal5)

06

0.03- ’

FIE I

015 \ i

02 N

0.23- o=t
B-Webl§5139)

Wi 45908)
Fig 9: Random approximation and exact solution with
B ~ Weibull distribution

Numerical Solution using the random Collocation Method

For n =1, choosing y,=x and y,=2x —x° ,and

choosing x = E as a collocation point, we have:

R =—Zx—22(x +cl(2x —xz))—ﬁ(x +c1(2x —xz))+x2

Evaluating the random residual at this collocation point and
setting it equal to zero,
5
+— c1 =0

R() 2, ﬂ[
36-1

cl=
54-18
3-1 >
Ux)=w,+ci,(x)=x ——(2x —x
() =y, +ep(x) Sﬂ—18( )
For n =2, choosing ¥, =x , y, =2x —x 7% and

1

? and choosing X =— and — as
3 2

v, =x2—%§x

thecollocation points, we have:
dz 2 2 2 3
P x+c1(2x -X )+c2 X —gx
2
—ﬂ(x +cl(2x —x2)+cz(x2—§x3j)+x2:0

Evaluating the random residuals at these collocation points and
set them equal to zero, we will get the two necessary and

R=-

: 1 sufficient random algebraic equations todetermine the
BBinamial(0623) B~Binmid10) coefficients
Fig 8: Random approximation and exact solution with 1 P 1 5 7 1
 ~ Binomial distribution R(=)=2c,—=c,—=pf—-—c,f——c,f+—=0
3 3 3 9 81 9
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1 1 3 1 1
R(z)=2¢,—=f-—c,f——c,f+—=0
(2) C 2/8 4C1ﬁ 6czﬁ 4

U,(x) =y, +tcy (x)+c,p,(x)

2 2 3
(48 —107p+34) 2 —x*) 94 ~14p+10) x )
9 2UpHA2 9F 21484432

For n=3 , choosing ¥,=x |, l//]=2x—x2 ,

2 2 3 2 5 1 4 .
W,=x"——x" and Wy, = Ex _Ex , andchoosing
11 2 , )
X = 3 s 5 and g as the collocationpoints, we have

R =2c, —c,(~4x +2)—c,(-6x* +4x)

2 2 1
_ﬂ(x +c, (Zx —x2)+c2 (x2 —?)Jc‘zj+c3 (3x3 —2)C4D+x2

1 2 2 1. 5 7 1 1
R=)=2 ~—c,~—c,—= f——c f~——c,f——c,pf+—=0
(3) 3?3’ 3/39‘/3 812ﬁ 543ﬂ9
1 1 13 1 5 1
R(=)=2c,~—c,——pB——c p——c,f——c,f+—=0
(2) 1 2 3 2ﬂ 4 lﬂ 6 2ﬂ 96 Sﬂ 4

2 2 2 8 20 8 4
R(=)=2c,+—c,——f-—cf——c,f——c,f+—=0
(3) 3t 3ﬂ 9 P 81 P 81 o 9

Us@) =y, ey, (x)+ey,(x) e, (x)
(17" -8958° +119798 - 7776) (2x —x°)
2(158° —844 /8 +115023 - 23328)

3 2 2 2 3
(/5 +498° ~12954 +864) (x - )

2(158° —844/8° +115023 - 23328)

3_ 2 _ 2 3_1 4
36(8° -298° +67p 108)(3x 2x)

15(15,6’3 8443 +11502,B—23328)
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4"‘ 1 ‘.vv
09 i o
03 S /
F 4 0
o, /
t ‘ /
&
08 ;] y
/ 16 o
05 b 4 — baa / — Bad
// """ Collocation_L / """ Callocation_1
. — — Collcation_2 b = = Cdlocation_2
04 // — - Collocation 3| 04 // = Cz\\z;:w:g:j
03 w/ /
."/ /
0] 0 v,
7 Vi
0

B~Betz(0 25)

B~Beta.3)
Fig 10: Random approximation and exact solution with

B ~ Beta distribution

i £
&/ v ! 4
08 /% ’
o /e
,"/ 08 / /
3 17
06 // //
o — Bt / — Bad
// """ Collacation_1 o f/ """ Collocation_L
// = = Callacation_2 // = = Collocation_2
04 # — - Collocation_3 / — - Callocation_3
2 04 i
7 /
= I /
J/ 02 ,;/
0 02 0‘4 06 08 1
1 a1
B~Binonial(0615) f~Binomail(1.0)

Fig 11: Random approximation and exact solution with
B ~ Binomial distribution

i — bt \ Y — ban
% R L Collocation_1 A / Al Collocation_L
. = = Collocation_2 \ / / == cmlu;atmn_Z
== Collocation_3| ¢ j. \ £ 8 i Co\locatmn}
\ g

B Wbl 5608 P Weibull.5135)
Fig 12: Random approximation and exact solution with
B ~ Weibull distribution

Example 2.The following random one dimensional
heat problem:

Copyright © 2017. Innovative Research Publications. All Rights Reserve 222



The Variational Methods for Solving Random Models

au(x,t)_azu(x,t)
o ox?

u(x,0)= fFsin(zx) inRxQ (13)

u(0,t)=0, u(L,t)=0 1inoR xT xQ

in R xT xQ

where [ is a second bounded order random variable.
The exact solution:

u(x,t)= e’”zt/i' sin(7zzx ) (14)

Numerical Solution using the random Galerkin Method
Choosing ¥, =0 so that satisfies the actualboundary
conditions ¥/,(0)=0 and y,(1)=0, taking w, =y,
(Galerkin)where y/, =x ’(1-=x) so that satisfies the
homogeneous form of boundary conditions.
For n =1, y, =w, =x(1-x) (Galerkin Approach) and
assuming L=1cm,we have:

) 2

_ i+j _
A, —on (1 x ) dx
62

ox’

1 .
Fy =] x'(1-x)

By (7), we get

[xj (1-x )]dx

1 0 1
— o, (t)=—=c,() (15
306tcl() 301()( )

(15) is an ordinary differential equation, for solving this one we
needthe initial condition of the random coefficients vector at

1=0.
c(0)=A" jol Bsin(zx W, (x )dx

The initial condition of the previous random ordinary
differential equation is

¢(0) = 3ojolﬁsin(m )x —x )dx =3.86558
The solution subject to the initial condition is:
u,(x 1) =3.8655pe " (x —x7)
For n =2

L LU
4|30 60| | 3 6
r 2
60 105 6 15
1o 11
JRRE —0c (t - =
0 60| _[3 6 {cl(t)}
11| 12 |ley
L L% | 2|0
60 105 Lo 6 15

c(0)=A" jol Bsin(zx Wy, (x )dx

160 140
3 3 0.1288 3.8655
= B= B
140 280 || 0.0644 0
3 3
Solving the system of an ordinary random differential

equations subject to the random initial condition of coefficients
vector, one gets

u,(x,t)=3.8779 e (x -x 2)

Fig 13: Random approximation and exact solution with
B ~N(1.0,2.0)

Fig 14: Random approximation and Exact solution with
B ~ Beta (1.0,1.0)
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Fig 15: Random approximation and exact solution with
B ~ Poisson (0.5)
Numerical Solution using the random Petrov-Galerkin
Method

Choosing ¥/, =0 so that satisfies the actual boundary
conditions ¥,(0) =0 and (1) =0, takingw, # v, .
Choosing v/, =x’ to be different from approximation

functions and y/; =x T1-x)

;:2 [x TA-x )]dx

For n =1, y,=x(1-x).,w,=x and assuming L=1

1 .
— 1
F, —Lx

cm,we have

1 0
Eacl(f)=—cl(f)(7)

(16) is an ordinary differential equation, for solving this one we
needthe initial condition of coefficients vector at # = 0.

c(0)=A" jol Bsin(zx W, (x )dx

The initial condition of the previous random ordinary
differential equationis :

5(0):12j;ﬂsin(;zx ) )dx =3.81817
The solution subject to the initial condition is:
u,(x,t)=3.81818e " (x —X 2)

Forn =2:

ISSN: 2347-5552, Volume 5, Issue 2, March- 2017

é 2_10 I
A = F =

I

20 30
1 1o
— || Zc 11
2 20| a"? _|, 5||9®
L i EC (t) 2 =~ Cz(t)
20 30]lor ° 3.6
c(0)=A"[ Bsin(x )y, (x )dx
[120 -1807 0.3182 e 4.0980 p
[ -180 300 || 0.1893% |7 | -0.4670

Solving the system of ordinary random differential equations
subject to the random initial condition of coefficients vector,
one gets,

uy(x,t) = (<0.5394 e " +4.6374 e " )(x —x?)
+(0.5394 5" —1.5458 e ) (x 7 —x?)

Fig 16: Random approximaﬁon and exact solution with
B ~N(1.0,2.0)
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Fig 15: Random approxima:[ion and exact solution with
B ~ Poisson (0.5)

VI. CONCLUSION

We have discussed in this work that if we want to use the
variational methods for solving random models, the
randomness input must be bounded and this is shown by some
numerical case studies.
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