

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 339


Abstract — Internet of Things (IoT) faces different

architectural challenges to meet the large scale
application issues, the heterogeneity, and the
self-adaptivity.

Many IoT applications require a dynamic
construction of the system and should ensure a high
degree of reliability. To this end, we propose the ReDy
architecture [1], which is a reusable solution for reliable
and dynamic distributed IoT applications.

In this paper we propose a formalization and
validation of the ReDy architecture. For this end, we
propose a formal model using LNT language [2]. We
propose also a suitable algorithm to implement a
reliable and dynamic membership management. Then
we give a formal validation of this critical part based on
formal modeling and model checking techniques [3].

Index Terms — Internet of Things (IoT), Distributed
systems, Formal methods.

I. INTRODUCTION
 Internet of Things (IoT) is the next wave of digital

transformation: many objects that surround us will be
connected. Sensors, actuators, and computing units will
form networks for different applications. Those
applications may concern home and personal uses,
enterprises uses, public utilities, or transportation. The IoT
is already ready for some specific uses as the majority of
personal uses and some enterprise uses. Today, different
challenges are still open. In particular architectural
challenges to meet the large scale application issues, the
heterogeneity, and the self-adaptivity of complex systems.
A large part of current work of the IoT architecture have
been inherited from the wireless sensor networks
background [4]. Other architectures should be investigated
for different application domains [5].

Manuscript received July 20, 2017
 Kaoutar Hafdi, IMS Team, ADMIR Laboratory, Rabat IT

Center, ENSIAS, Mohammed V University, Rabat, Morocco,
Abdelaziz Kriouile, IMS Team, ADMIR Laboratory, Rabat IT

Center, ENSIAS, Mohammed V University, Rabat, Morocco,
Abderahman Kriouile, Farasha Systems, Rabat, Morocco and

SUPMTI, Rabat, Morocco

Many IoT applications require a dynamic construction of

the system and should ensure a high degree of reliability.
For this end, we propose the ReDy distributed systems for
Reliable and Dynamic distributed systems [1]. Those
systems are designed using the ReDy architecture. The
ReDy architecture is a reusable solution for a large
spectrum of distributed systems. Our solution integrates
two important requirements that are common to the
concerned systems. The first one is to design the system in a
highly dynamic environment, i.e, components can
continuously join and leave the system network. The second
requirement is about fault tolerance. The designed system
should have a high resistance to faults, which permit to
preserve the overall behavior of the system even in the
presence of faulty components. A large family of systems
needs to guarantee the above requirements. Besides
proposing a common architecture for those systems, our
solution gives general rules that should be respected and
implemented during the design phase so as to construct
reliable and dynamic distributed systems.

As application samples we have: large scale wireless
sensor networks, deploy and forget networks, self-adaptive
systems of systems, critical infrastructure monitoring,
smart grid and household metering, autonomous vehicles,
heterogeneous systems with interaction between other
sub-networks, smart traffic, intelligent transportation and
logistics [5].

We take the advantage of the formal methods, witch are a
particular kind of mathematically based techniques for the
specification and verification, to model the ReDy
architecture and to validate complicated behaviors. The use
of formal method allows us to ensure a good level of
reliability and robustness of our proposed design.

Formalizing our system using a formal model let us to
express the behavior of the system in an unambiguous way:
the formal specification expresses a unique semantic. In
addition to that, this formal model can be validated using
automatic and exhaustive formal methods.

That is why we opted for using formal methods in
modeling and validation of our proposed architecture.

Contributions: In this paper we propose a formalization
and validation of the ReDy architecture [1] which is a
reusable solution for the different IoT applications
presented above. We propose a formal model for the ReDy
architecture using LNT language [2]. Then we focus on the
most critical part of this architecture which is the

Formal Modeling and Validation of ReDy
Architecture Intended for IoT Applications

Kaoutar Hafdi, Abdelaziz Kriouile, Abderahman Kriouile

Formal Modeling and Validation of ReDy Architecture Intended for IoT Applications

Copyright © 2017. Innovative Research Publications. All Rights Reserve 340

membership management. We propose an algorithm to
implement a reliable and dynamic membership
management. Then we propose a formal validation of this
critical part based on formal modeling and model checking
techniques [3]. The formal validation uses the CADP
toolbox [6].

Outline: The rest of this paper is organized as follows.
Section II presents the ReDy distributed systems

architecture. Section III describes the proposed formal
model of the ReDy architecture. Section IV details the
enhanced shuffling algorithm used for membership
management of ReDy systems. Section V exhibits the
formal validation work of the proposed algorithm.
Section VI surveys related work.

II. REDY SYSTEMS
Many distributed systems have several common

requirements, regardless of features relative to the field on
which each system is applied. The common requirements
can be gathered and analyzed in order to propose reusable
solutions for each family of similar systems.

Our objective is to propose a solution for a family of
distributed systems designed for highly dynamic
applications in hazardous environments. We call those
systems ReDy distributed systems for Reliable and
Dynamic distributed systems. The ReDy solution focuses on
the dynamic construction of the system and ensures
interactions between the components of the system. Our
proposition combines solutions proposed in the literature in
a packaged solution to be reusable for distributed systems
derived from different application fields and having several
common general requirements.

A. ReDy Architecture
The ReDy architecture stipulates that the global system is

composed of several subsystems. Each subsystem is a
distributed system and consists of several components.
There are three types of components:

1) Detection units are components in touch with the
external environment and are responsible of detecting
environmental changes. In general, those units are
representing sensors. The nature of the sensor depends on
the type of events that should be detected.

 2) Action units are components in touch with the
external environment and are responsible of executing
actions affecting the environment. In general, those units
are representing actuators. The nature of the actuator
depends on the type of events that should be achieved.

 3) Governance units are in charge of collecting
information from detection units and taking adequate
decisions according to the analysis of the received
information. The decision is then sent to action units. We
should notice that each subsystem has a unique governance
unit, and that governance units of subsystems can
communicate between each others. In order to strengthen
the fault tolerance of the system, this vital unit is replicated.

The replica takes over in case of the crash of the principal
governance unit.

Each subsystem is composed of one governance unit and
several detection and action units.

Example: Figure 1 illustrates an example of the global
architecture of the ReDy distributed system. In this
example, the global system is composed of three
subsystems. Each subsystem contains one governance unit.
The first subsystem is composed of three detection units and
two action units. The second subsystem is composed of one
detection unit and three action units. The third subsystem is
composed of two detection units and two action units. This
is a very simplified model used just for illustration
purposes. The governance units are connected to each
other, while the detection and action units of each
subsystem are connected only to the governance unit of this
subsystem.

ReDy systems are designed according a hybrid
architecture which combines centralized solution, i.e,
client-server solutions, for the communication between
components inside a subsystem, and decentralized solutions
for the communication between different governance units.

In our work, we focus on studying how the network of
governance units is constructed and how the
communication between governance units is handled,
which corresponds to the decentralized part of the system.

B. Membership Management
In this part, we present how the components of our ReDy

distributed system are organized.
The decentralized part of our distributed system is

constructed following an unstructured peer-to-peer
architecture [7]. In the remaining, the governance units
represent the nodes of the unstructured peer-to-peer
architecture. The principal reasons that motivate our choice
for unstructured peer-to-peer architecture is that it is the
most convenient architecture for highly dynamic
environments, i.e, the performance is not deteriorated by
nodes leaving and joining the system [7]. As a result, this
architecture is adapted for systems with potentially major
failures. In addition to that, the communication on such
architectures is achieved by epidemic broadcast, which
corresponds to our requirements, since the communication
between governance units is realized by disseminating the
information over all units.

The graph construction: Unstructured peer-to-peer
systems are built using randomized algorithms. The main
idea of such systems is that each node maintains a list of
neighbors such that this list is constructed in a more or less
random way [8]. This list is called partial view. There are
many ways to construct such a partial view. In this paper,
we propose to use the enhanced shuffling algorithm
proposed by Voulgaris et al in [9] and formalized by Jelasity
et al in [10], [11].

In the enhanced shuffling algorithm, each node
maintains a list of c neighbors. The basic idea of this
algorithm is that the nodes exchange their list of neighbors

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 341

periodically (shuffle operations). The exchanged list is of

the same length for all nodes. This length is called Shuffle
Length (SL) and it is always smaller than c (the number of
neighbors). An other important parameter used in this
algorithm is the neighbors ages. For a given node of the
network, having a list of neighbors, we give for each
neighbor a number that we call Age. The age of all
neighbors is increased by one when shuffling (executing a
shuffle operation). Such a parameter allows to know the
oldest neighbor in the list.

Example: Figure 2 shows a shuffle iteration. The peer 4
initiates the shuffling. It chooses the peer 6 because it is the
oldest neighbor. The length of the neighbors list is c = 5 and
the shuffle list is SL = 3. Peer 4 sends the list {4,2,8} to peer
6, which updates its entries and sends back to peer 4 the list
{2,5,3}. Peer 4 updates its entries and both peers 4 and 6
hold an updated neighbors list.

Joining or living the network: To join the network, a
node has just to find one node in the overlay and to be tied to
it. The joining node should construct its neighbors list and
should be included in neighbors lists of other nodes. This is
achieved by the periodic shuffling.

To leave the network, there is nothing to do: just leave.
The system will adapt and ignore the node that has left
when it is not responding. This feature provides a high
failure resistance because a failed node can not inform the
system when failing.

C. Communication Model
The communication in our system is achieved by

disseminating the information over all communicating
peers. In other words, the most convenient communication
model in our case is the broadcast.

Our system should realize a high degree of reliability.
This is achieved by tolerating failures and dealing with
them in order not to deteriorate the overall functioning of
the system. Selecting processes and links nature is of a great
importance for reaching this objective. Practically speaking,
we should ensure that a process that fails and recovers later
can continue participating in the system. This is
abstraction made about the process which is called:

crash-recovery process abstraction [12], [13]. The

communication channel abstraction defines the
point-to-point link. This link should fit with the abstraction
made in processes and ensures that even if a process crashes,
it will be able to deliver sent messages over the network
after recovering. This feature is ensured by using stubborn
link abstraction [12], [13].

Taking into account those two abstractions, the devised
algorithm used for the components communication is a
Uniform Reliable Broadcast [13] and it is designed using
four principal events: Initialization event, Recovery event,
Broadcast event and Delivery event.

The reliable variant of this algorithm ensures that even if
the sender crashes at the middle of a broadcast operation,
all correct processes will deliver the message. The uniform
variant of the algorithm ensures that if a faulty process
delivers a message, then all correct processes deliver this
message, i.e, the set of messages delivered by faulty
processes is a subset of messages delivered by correct
processes.

In our paper, we focus on the membership management
of our system. For further information about the
communication model, see our previous paper [1].

III. REDY ARCHITECTURE FORMAL MODELING
In this section, we start by presenting the formal

language used to model our ReDy architecture. After that,
we present the formal model of the ReDy architecture. We
focus on giving the defined modules and processes that are
used.

A. CADP toolbox and LNT language
CADP (Construction and Analysis of Distributed

Processes) is a toolbox for the design of asynchronous
concurrent systems [6]. CADP supports several process
calculi specification languages and offers various tools for
simulation and formal verification, including model
checkers (temporal logics and modal µ-calculus). CADP is
designed in a modular way and puts the emphasis on
intermediate formats and programming interfaces,

Figure 1: ReDy Archtecture Example

Formal Modeling and Validation of ReDy Architecture Intended for IoT Applications

Copyright © 2017. Innovative Research Publications. All Rights Reserve 342

enabling to combine CADP tools with other tools and
adapting to various specification languages. Today, CADP
contains around fifty tools and more than a dozen libraries.

LNT [2] (a shorthand for “LOTOS New Technology”) is
a modern formal specification language that has been
designed and implemented in the CADP toolbox since 2005.
LNT is intended to be concise, expressive, easily readable,
and user-friendly. LNT combines the best features of
process calculi, functional programming languages, and
imperative programming languages. The semantics of an
LNT model is defined as a Labeled Transition System (LTS)
[14], following a black box view of the system.

B. Fomally Modeling ReDy Systems with LNT
Language

In this part, we present the formal modeling of the ReDy
architecture using LNT language. To achieve that, we
define six modules communicating between each other.
The module main uses the module sub_system. The module
sub_system uses three modules: governance_unit,
action_unit and detection_unit. The former three modules
use the module types (Figure 3).

The types module defines the different data types used in

this model. First of all, we define the index_sub_system as
an index for the subsystems composing our system. In our
cases we limit the range of possible index to 4 subsystems
because we define four subsystems in our global system. We
instantiate different predefined functions for this type,
which are the equality comparison "==", the inequality
comparison "<>", the inferiority "<=", and the strict
inferiority "<".

type index_sub_system is
 range 1 .. 5 of Nat
 with "==","<>","<=", "<"
end type

We define also the types index_detection and

index_action which are indexes of action units and
detection units. Those types are defined with the same
predefined function as above.

type index_detection is
 range 1 .. 3 of Nat
 with "==","<>","<=", "<"
end type

type index_action is
 range 1 .. 3 of Nat
 with "==","<>","<=","<"
end type

In the main module we start by the system variables

declaration, then we initialize these variables. The system
variables are then transmitted to the subsystems as
parameters. Each subsystem is identified by a subsystem
index index_sub_system.

We define a parallel composition between several
subsystems. In this case we have four communicating
subsystems. This parallel composition is defined with
communication on several gates.

In the following, we focus on the gates used for
communications among system elements, corresponding to
both centralized communication and decentralized
communication.

The gates used for centralized communication inside a
subsystem are DETECTION, DECISION, ACTION gates.

The gate used for decentralized communication between
different subsystems is FORWARD gate, which is used to
inform other subsystems that a problem is detected. In the
following, we note GATES1 the set of gates DETECTION,
DECISION, ACTION, and FORWARD gates.

module main(sub_system) is
process MAIN [GATES1]
is
 var <<system variables>>
 in
 ... -- variables initialization
 par FORWARD in
 sub_system [GATES1]
 (<<system variables>>,index_sub_system(1))
 ||
 sub_system [GATES1]
 (<<system variables>>,index_sub_system(2))

Figure 2: Shuffling algorithm

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 343

 ||
 sub_system [GATES1]
 (<<system variables>>,index_sub_system(3))
 ||
 sub_system [GATES1]
 (<<system variables>>,index_sub_system(4))
 end par
 end var
end process
end module

In the sub_system module, we define the parallel

composition between subsystem components. We can
define different subsystem structures with different
numbers of detection units and different numbers of action
units. In this case, we present an example of a subsystem

with one governance unit communicating in parallel with
two action units and three detection units.

module sub_system(governance_unit,action_unit,
 detection_unit) is

process sub_system [GATES, SHUFFLING_TRANSFER]
 (nb_neighbors,SL:NAT,id_sub:index_sub_system)
is
 par DETECTION, ACTION in
 governance_unit[DETECTION,DECISION,ACTION,
 FW_DETECTION,SHUFFLING_TRANSFER]
 (nb_neighbors,SL,id_sub)
 ||
 par
 par
 action_unit[ACTION] (id_sub, index_action(1))
 ||
 action_unit[ACTION] (id_sub, index_action(2))
 end par
 ||
 par

 detection_unit[DETECTION]
 (id_sub, index_detection(1))
 ||
 detection_unit[DETECTION]
 (id_sub, index_detection(2))
 ||
 detection_unit[DETECTION]
 (id_sub, index_detection(3))
 end par

 end par
 end par

end process end module

Governance_unit module consists of two processes. The

governance_unit process initializes and calls the
membership_management process.

This process is responsible of the construction of
components network. In particular, this process is
responsible of adding and removing subsystems to the
neighbor list of the present subsystem. In the following MM
Gates denotes Membership Management Gates.

module governance_unit (types) is

process governance_unit[DETECTION, ACTION,

 FORWARD_DETECTION,MM Gates]
 (<<membership management parameters>>,
 my_id_sub:INDEX_SUB_SYSTEM)
is
 var <<local variables definition>>
 new_detection : bool,
 action_to_do : bool
 in
 -- initialization
 <<membership list initialization>>
 new_detection := false;
 action_to_do := false;
 membership_management[DETECTION,ACTION,
 FORWARD_DETECTION,MM Gates]
 (<<MM parameters>>,
 my_id_sub, new_detection,action_to_do)
 end var
end process

process membership_management[DETECTION,
 ACTION, FORWARD_DETECTION,MM GATES]
 (<<MM parameters>>
 my_id_sub:INDEX_SUB_SYSTEM,
 new_detection : bool,
 action_to_do : bool)
is
 var <<local variables definition>>
 in
 <<membership management code>>
 membership_management [DETECTION, ACTION,
 FORWARD_DETECTION,MM GATES]

Figure 3: LNT Modules

Formal Modeling and Validation of ReDy Architecture Intended for IoT Applications

Copyright © 2017. Innovative Research Publications. All Rights Reserve 344

 (<<MM parameters>>,
 my_id_sub, new_detection, action_to_do)

 end var
end process end module

Detection_unit module is implemented by a process

composed by a permanent loop. This loop expresses
permanent iterations of a non-deterministic choice between
two branches. The first branch is a DETECTION action
which means that the detection unit informs the
corresponding governance unit that an event is detected.
The second branch is an intern action i which expresses that
the detection unit does not detect an event in this iteration.

module detection_unit (types) is

process detection_unit[DETECTION : any]
 (id_sub:index_sub_system,id:index_detection)
is
 loop
 select
 DETECTION(id_sub,id)
 []
 i
 end select
 end loop
end process
end module

Action_unit module is implemented by a process

composed by a permanent loop. This loop expresses
permanent iterations of a non-deterministic choice between
two branches. The first branch is an ACTION action which
means that the action unit receives an action order from the
corresponding governance unit. The second branch is an
intern action i which expresses that the action unit does not
receive any action from the corresponding governance unit.
module action_unit (types) is

process action_unit[ACTION:any]
 (id_sub:index_sub_system,id:index_action)
is
 loop
 select
 ACTION(id_sub,id)
 []
 i
 end select
 end loop
end process
end module

IV. SHUFFLING ALGORITHM
In the following, we focus on the membership

management part between subsystems in particular

between the subsystem elements that communicate with the
other subsystems which are the governance units. In this
part, we have a decentralized mode where each subsystem is
a node in a peer to peer communication with the other
nodes.

In this chapter, we propose a formalization of the
enhanced shuffling algorithm used for the membership
management of our system components. We start by
defining all variables and data types we need.

- nb_neighbors : an integer representing the number of

neighbors of a given node.
- SL : an integer representing the number of elements in

the shuffle list. This number is always the same in all
shuffle iterations and it is always smaller than the number
of neighbors (SL < nb_neighbors).

- add_T : is a data type to define the type address. Each
node has a specific and unique address which is an integer
such that 1 ≤ add_T ≤ nb_neighbors.

- neighbor_T : a data type to define a neighbor. A
neighbor could be empty which corresponds to an empty
neighbor, or non empty and defined by an address and an
age. The age of all neighbors is increased by one on each
shuffle iteration.

- neighbors_list : the set of neighbors of the node
- shuffle_list : a set of neighbors of the initiating node

contained on its neighbors list. This list is sent by the
initiating node to the receiving node in a shuffle iteration.

- shuffle_list_Q : a set of neighbors of the receiving node
contained on its neighbors list. This list is sent by the
receiving node to the initiating node in a shuffle iteration.

- neighbor_Q : the oldest neighbor in the neighbors list
of the initiating peer. add_Q and age_Q are the address and
the age of neighbor_Q.

- Myadd : element of type add_T, used to define the
address of the current communicating peer.

On each shuffle iteration, we have two interacting peers:
the initiating peer and the receiving peer. In the following,
we note P the initiating peer and Q the receiving peer.

 - Case 1 : The initiating peer
The first step in a shuffle iteration is to increase by one

the age of all neighbors of the initiating peer P.
The second step is to select a set of neighbors from the

neighbors list, which corresponds to the shuffle list that will
be exchanged in a shuffle iteration. We start by selecting
neighbor_Q with the highest age among all neighbors. We
achieve that by browsing the neighbors list of the initiating
peer P looking for the highest age. neighbor_Q corresponds
to the receiving peer in a shuffle iteration. Then we select
SL-1 other random neighbors that we put in the shuffle list.
Random_neighbor is a function that returns a randomly
chosen neighbor from neighbors_list.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 345

In the third step we replace Q's entry in shuffle_list with
a new entry of age 0 and with P's address.

After that we send the subset shuffle_list to peer Q using
the function Send(). This function has three parameters: the
address of the sending peer, a list of neighbors of the
sending peer, and the address of the receiving peer.

Then peer P receives from Q a subset of no more than SL
elements of its own neighbors. It is the list shuffle_list_Q.
We use the function Receive() which has got two
parameters: the address of the sending peer (peer Q) and a
list of neighbors of peer Q.

When peer P receives shuffle_list_Q, we check whether
there are peers in this list that have P's address or peers that
are already contained in neighbors_list. Those peers are
discarded. After that we start updating P's neighbors_list to
include all remaining peers in shuffle_list_Q (except peers
that have been already discarded). We start by using empty
slots, then we replace entries among the ones sent to peer Q
(peers contained in shuffle_list).

We define the function Is_in_shuffle_list() to check

weather a peer is included in shuffle_list and returns a

boolean according to this result.
- Case 2 : The receiving peer
For the receiving peer Q algorithm, we have two

executed steps. Once the receiving peer Q receives the
shuffle list from the initiating peer P, peer Q executes the
first step consisting of preparing a random list of at most SL
neighbors, then peer Q sends this list to peer P.

In the second step, peer Q updates the list of its neighbors
by taking into account the list sent by peer P. This step is
executed the same as for the initiating peer P.

V. FORMAL VALIDATION OF THE SHUFFLING
ALGORITHM FORMALIZATION

In this chapter, we propose to validate our shuffling
algorithm formalization using formal validation.

We propose to implement the algorithm in our formal
model presented in Section IV.

The formal validation is limited by the state space
explosion problem, that is why we focus on validating
complicated behaviors such as the shuffling algorithm in
our case. We start by eliminating all the non relevant details
regarding the behavior that we want to validate.

In our case we propose a minimized model with only
governance units.

This formal model is composed by three principal
modules: the main module, the types module, and
governance_unit module.

In the types module, we define new types related to the
shuffling algorithm that we need in our program. In this
module, we define five types:

- INDEX_GU: is an integer ranging from 1 to 4. This
type expresses the index of the governance unit which is
unique for each governance unit. For this type, we can use
the predefined functions of equality, inequality, superiority
and strict superiority.

type INDEX_GU is
 range 1 .. 4 of Nat
 with "==","<>","<=", "<"
end type

- TAB_IS_NEIGHBOR: a table of Boolean defining for

each node whether other nodes are neighbors or not. The
length of the table is the total number of nodes in the
system. In this case, the total number of nodes in the system
is four.

type TAB_IS_NEIGHBOR is
 array [1 .. 4 (*nb of nodes*)] of BOOL
end type

- NEIGHBOR_T: a constructor used to define the type

neighbor. A neighbor can be either an empty_neighbor or a
pair of two fields. The first field is the index of the node
(INDEX_GU). The second field is an integer denoting the
age of the node (Age). For this type we can use four

Formal Modeling and Validation of ReDy Architecture Intended for IoT Applications

Copyright © 2017. Innovative Research Publications. All Rights Reserve 346

predefined functions: two functions to access the
NEIGHBOR_T fields which are get to read and set to
modify, and two other functions to compare two neighbors
which are equality and inequality.

type NEIGHBOR_T is
 empty_neighbor,
 NEIGHBOR(ind:INDEX_GU,age:NAT)
 with "get", "set", "==", "<>"
end type

- NEIGHBORS_LIST_T: a constructor used to define the

list of neighbors. It contains elements of type
NEIGHBOR_T. The length of this list is the same for all
nodes (nb_neighbors), which is a variable defined and
initialized in the main module). In this case, the number of
neighbors is three.

type NEIGHBORS_LIST_T is
 array [1 .. 3 (*nb_neighbors*)]
 of NEIGHBOR_T
end type

- SHUFFLE_LIST_T: a constructor used to define the

shuffle list. It contains elements of type NEIGHBOR_T.
The length of this list is SL, which is a variable defined and
initialized in the main module. In this case, the shuffle list
length is two.

type SHUFFLE_LIST_T is
 array [1 .. 2 (*SL*)] of NEIGHBOR_T
end type

In the main module, we define the process MAIN which

is parametrized by two gates: Membership_initiating gate
and Shuffling_transfer gate. In the body of the process, we
start by defining two variables: nb_neighbors denoting the
number of neighbors that each node can not exceed, and SL
which denotes the length of the shuffle list of each node.
Those two variables are initialized in the main process and
remain the same during the execution of our program. In
this case we suppose that the number of neighbors is three
and the shuffle list length is two.

After that, we define a parallel composition between four
processes instantiations. The global synchronization set is
composed of two gates: Membership_initiating and
Shuffling_transfer. The four processes in the parallel
composition represent the governance units composing our
distributed system and communicate on gates
Membership_initiating and Shuffling_transfer. Those
processes have two common parameters nb_neighbors and
SL for shuffle length, and one specific parameter index_GU
which is specific for each process. In this case we have four
communicating governance units, each one is instantiated
with a specific Index_gu from 1 to 4. The governance units
are also instantiated with the value of nb_neighbors and the

shuffling list length (SL). In the following, we note
GATES2 the set of gates composed by
Membership_initiating and Shuffling_transfer gates.

process MAIN [GATES2]
is
var nb_neighbors : NAT,
 SL : NAT
in
 nb_neighbors := 3;
 SL := 2;
 par GATES2 in
 governance_unit [GATES2]
 (nb_neighbors,SL,index_GU(1))
 ||
 governance_unit [GATES2]
 (nb_neighbors,SL,index_GU(2))
 ||
 governance_unit [GATES2]
 (nb_neighbors,SL,index_GU(3))
 ||
 governance_unit [GATES2]
 (nb_neighbors,SL,index_GU(4))
 end par
end var
end process

In the governance_unit module, we declare two

processes: governance_unit process and
membership_management process.

The governance_unit process is an initialization process.

It is executed one time when the program is launched. In
this process, we define the initial connections between
neighbors. In our case, the resulting connections from the
initialization process are presented in Figure 4. A non
deterministic choice structure is used to allow each
governance unit to define its neighbors list.

 Figure 4: Nodes initialization

Then we call the membership_management process.
The membership_management process is parametrized

by two gates for communication: Membership_initiating
and Shuffling_transfer.

It has five formal parameters : the former nb_neighbors
and SL, neighbors_list which define the list of neighbors of
the actual governance unit, GU_is_neighbor a table of
Boolean to check whether governance units of the system
are neighbors of the actual governance unit, my_id_GU to

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 347

give the index of the actual governance unit.
Then we start by defining variables: index_NL an integer

to browse the neighbors list, index_SL an integer to browse
the shuffle list, index_q the index of the oldest neighbor,
index_1 and index_2 used to identify other governance
units, q_age the age of the oldest neighbor, shuffle_list the
list that is sent during a shuffling operation, q_shuffle_list
the received list during a shuffling operation. The
membership management code is explained step by step in
the following.

process membership_management[GATES2]
 (nb_neighbors:NAT,SL:NAT,
 neighbors_list : NEIGHBORS_LIST_T,
 node_is_neighbor: TAB_BOOL,
 my_id_GU:INDEX_GU)
is
 var index_NL, index_SL : NAT,
 index_q, index_1,index_2:INDEX_GU,
 q_age : NAT,
 shuffle_list,q_shuffle_list:SHUFFLE_LIST_T
 in
<<membership management code here>>
end process

In a shuffling operation, a governance unit is whether an

initiating node, a receiving node, or a non concerned node.
This behavior is modeled as a non deterministic choice with
three cases. In the remaining, we note P the initiating node
and Q the receiving node.

- Case 1: initiating node

We start by a rendezvous on Membership_initiating gate.

During this communication, we have two exchanged data:
my_id_GU the index of the initiating node which is sent to
other nodes, index_1 received parameter from the receiving
node. This communication takes place only if index_1 is
different from my_id_GU.

Membership_initiating(my_id_GU, ?index_1)
where (index_1 <> my_id_GU);

The first step of the shuffling algorithm is to increase by

one the age of all neighbors in the neighbors_list of the
initiating node. This behavior is expressed in the loop_ NL.

neighbors_list[index_NL]:=
neighbors_list[index_NL].{age=>
neighbors_list[index_NL].age+1};

In the same loop, we check on each iteration the age of

the node in order to find the oldest neighbor. By this way,
we reduce the complexity of the algorithm.

if(neighbors_list[index_NL].age>q_age) then
 index_q := neighbors_list[index_NL].ind;

 q_age := neighbors_list[index_NL].age
end if

After that, we start filling the shuffle list. In the first cell,
we put the node P with age 0.

shuffle_list[1]:= NEIGHBOR(my_id_GU,0);

Then we fill other cells of the shuffle list randomly from
nodes in neighbors list.

Once the shuffle_list is ready, we achieve a
communication by rendezvous on the gate
Shuffling_transfer between governance units of the system.
Four parameters are exchanged in this communication:
my_id_GU the index of the initiating node P, sent from P to
Q, shuffle_list the shuffle list of P, sent from P to Q, index_q
the index of the receiving node Q, sent from P to Q,
q_shuffle_list the shuffle list of Q, sent from Q to P.

Shuffling_transfer(my_id_GU, shuffle_list,
 index_q, ?q_shuffle_list);

Once q_shuffle_list is received from Q, we set the age of

Q to 0.
After that, we start updating neighbors_list using the

received q_shuffle_list. We discard nodes having the index
of the initiating node P and nodes already contained in P's
neighbors_list.

(q_shuffle_list[index_SL].ind<>my_id_GU)
and (node_is_neighbor[NAT
 (q_shuffle_list[index_SL].ind)]==false)

After that we start filling empty_neighbor cells then we
replace nodes already sent to Q in shuffle_list.

loop NL in
index_NL:=index_NL+1;
if(neighbors_list[index_NL]==empty_neighbor)
then (neighbors_list[index_NL]:=
 q_shuffle_list[index_SL];
 break NL)
elsif (neighbors_list[index_NL]==shuffle_list[2])
then (neighbors_list[index_NL]:=
 q_shuffle_list[index_SL];
 break NL)
end if;
end loop

- Case 2: Receiving node
If the node is a receiving one, we start by a rendezvous on

Membership_initiating gate. During this communication,
we have two exchanged data: index_1 a received parameter
from the initiating node expressing its index and
my_id_GU the index of the receiving node which is sent to
other nodes. This communication takes place only if
index_1 is different from my_id_GU.

Formal Modeling and Validation of ReDy Architecture Intended for IoT Applications

Copyright © 2017. Innovative Research Publications. All Rights Reserve 348

Membership_initiating(?index_1, my_id_GU)
 where (index_1 <> my_id_GU);

After that, the receiving node prepares randomly a

shuffle list that will be sent to the initiating node.

Once the shuffle_list is ready, we achieve a

communication by rendezvous on the gate
Shuffling_transfer between governance units of the system.
Four parameters are exchanged in this communication: any
INDEX_GU the index of the initiating node P, sent from P
to Q, q_shuffle_list the shuffle list of P, sent from P to Q,
my_id_GU the index of the receiving node Q, sent from Q
to P, shuffle_list the shuffle list of Q, sent from Q to P.

Shuffling_transfer(?any INDEX_GU,
 ?q_shuffle_list,my_id_GU,shuffle_list);

The receiving node updates the list of its neighbors by

taking into account the received list from the initiating
node. This update is executed the same as for the initiating
node.

- Case 3: Non concerned node
This node is a passive node. All remaining nodes (except

the initiating and receiving nodes) are non concerned
nodes. Such a node communicates on both
Membership_initiating and Shuffling_transfer gates. The
non concerned node gets a knowledge about the handled
communication and data transfer without taking part of the
transfer.?

Membership_initiating(?index_1, ?index_2)
where (index_1 <> my_id_GU)
 and (index_2 <> my_id_GU) ;

Shuffling_transfer(?index_1,
 ?any SHUFFLE_LIST_T, ?index_2,
 ?any SHUFFLE_LIST_T)
where (index_1<>my_id_GU)
 and (index_2<>my_id_GU)

VI. RELATED WORKS
In addition to the unstructured peer to peer architecture

that we have used in this paper for modeling the
membership between the governance units, there exists a
structured peer-to-peer architecture where the overall
graph of nodes is constructed using a deterministic
procedure such as the distributed hash table (DHT) [15]. As
an example of a system implemented according to a
structured peer-to-peer architecture and using the DHT
procedure, we find the Chord system [16]. According to the
survey proposed by Lua et al [7] comparing the structured
and unstructured architectures, the most convenient one for
highly dynamic systems exposed to failures is the
unstructured architecture.

Several protocols are proposed at the MAC level of the
sensing end of IoT systems such as TDMA (collision free),
CSMA (low traffic efficiency) and FDMA (collision free
but requires additional circuitry in nodes) schemes
available to the user [17]. In our case we are interested on
the system-level protocols either for the communication
between sensors, actuators, and computing unit or for the
communication between different subsystems.

The proposed formalization and validation approach is
used by the industry to validate specific networking
protocols to deal with complex behaviors that cannot be
proven by classical test and simulation approaches [18],
[19].

VII. CONCLUSION
In this paper, we present a formalization of the ReDy

distributed systems architecture as well as the enhanced
shuffling algorithm for the membership management of
nodes of this architecture. Then we focus on the formal
validation of this membership management part. This work
proposes and validates formally a solution for IoT
applications in large scale, highly hazardous, and dynamic
environments.

The formal validation is limited to small configurations
of the systems (i.e., number of nodes, number of
governance/action/detection units) because of the state
space explosion problem. In the other hand, it provides an
exhaustive validation for those configurations. As a result,
we can eliminate a big number of specification errors and,
by construction, failures in an early stage.
This solution has to be implemented in larger
configurations to be tested in real life conditions and to
validate other aspects mainly the implementation aspects.
The implementation of larger configurations in real life
conditions have to deal with hardware aspects specific to
each IoT application.

REFERENCES
[1] K. Hafdi and A. Kriouile, “Designing redy distributed

systems,” in Autonomic Computing (ICAC), 2015
IEEE International Conference on. IEEE, 2015, pp.
331–336.

[2] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C.
McKinty, V. Powazny, F. Lang, W. Serwe, and G.
Smeding, “Reference manual of the lnt to lotos
translator (version 6.1),” Inria/Vasy and
Inria/Convecs, vol. 131, 2014.

[3] R. Mateescu and D. Thivolle, “A model checking
language for con-current value-passing systems,”
inInternational Symposium on Formal Methods.
Springer, 2008, pp. 148–164.

[4] A. P. Castellani, N. Bui, P. Casari, M. Rossi, Z.
Shelby, and M. Zorzi, “Architecture and protocols for
the internet of things: A case study,” in Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International
Conference on. IEEE, 2010, pp. 678–683.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-5, Issue-4, July 2017
 DOI:10.21276/ijircst.2017.5.4.8

Copyright © 2017. Innovative Research Publications. All Rights Reserve 349

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of things (iot): A vision, architectural
elements, and future directions,” Future generation
computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe,
“CADP 2011: A Toolbox for the Construction and
Analysis of Distributed Processes,” in Proc. of
STTT’13. Springer, 2013.

[7] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim et
al., “A survey and comparison of peer-to-peer overlay
network schemes.”IEEE Communications Surveys and
Tutorials, vol. 7, no. 1-4, pp. 72–93, 2005.

[8] A. Tanenbaum and M. Van Steen, Distributed
systems. Pearson Prentice Hall, 2007.

[9] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon:
Inexpensive membership management for
unstructured p2p overlays,”Journal of Network and
Systems Management, vol. 13, no. 2, pp. 197–217,
2005.

[10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M.
Van Steen, “The peer sampling service: Experimental
evaluation of unstructured gossip-based
implementations,” inProceedings of the 5th
ACM/IFIP/USENIX international conference on
Middleware. Springer-Verlag New York, Inc., 2004,
pp. 79–98.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. Van Steen, “Gossip-based peer
sampling,”ACM Transactions on Computer Systems
(TOCS), vol. 25, no. 3, p. 8, 2007.

[12] R. Guerraoui, R. Oliveira, and A. Schiper, “Stubborn
communication channels,” Tech. Rep., 1998.

[13] C. Cachin, R. Guerraoui, and L.
Rodrigues,Introduction to reliable and secure
distributed programming. Springer, 2011.

[14] T. A. Henzinger, “The theory of hybrid automata,” in
Verification of Digital and Hybrid Systems. Springer,
2000, pp. 265–292.

[15] H. Balakrishnan, M. F. Kaashoek, D. Karger, R.
Morris, and I. Stoica, “Looking up data in p2p
systems,”Communications of the ACM, vol. 46, no. 2,
pp. 43–48, 2003.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup protocol for
internet applications,” Networking, IEEE/ACM
Transac-tions on, vol. 11, no. 1, pp. 17–32, 2003.

[17] I. Demirkol, C. Ersoy, and F. Alagoz, “Mac protocols
for wireless sensor networks: a survey,”IEEE
Communications Magazine, vol. 44, no. 4, pp.
115–121, 2006.

[18] Kriouile and W. Serwe, “Formal analysis of the ace
specification for cache coherent systems-on-chip,”
inInternational Workshop on Formal Methods for
Industrial Critical Systems. Springer, 2013, pp.
108–122.

[19] A. Kriouile and W. Serwe, “Using a formal model to
improve verification of a cache-coherent
system-on-chip,” inInternational Conference on Tools

and Algorithms for the Construction and Analysis of
Systems. Springer, 2015, pp. 708–722.

Kaoutar Hafdi is a PhD Student at National
Higher School for Computer Science and
Systems Analysis (ENSIAS) , Mohammed V
University and IMS team at ADMIR Lab in
Rabat IT Center. She received a Master of
Research in parallel, distributed, and embedded

systems from Grenoble INP Institute in Grenoble, France obtained
in 2013. She received also a Master of Engineering in software
engineering from ENSIAS, Mohammed V University, Rabat,
Morocco obtained in 2012.

Abdelaziz Kriouile is a Full Professor in the
Software Engineering Department at National
Higher School for Computer Science and
Systems Analysis (ENSIAS), Mohammed V
University, Rabat, Morocco. He is a member
of IMS Team at ADMIR Lab in Rabat IT

Center. He was the head of SIME Lab. (Mobile and Embedded
Information Systems Laboratory) from 2010 to 2017. He received
his PhD in Computer Science from the Nancy University, France
in 1990. He received a State doctorate from the University of
Mohammed V, Rabat, Morocco in 1995. His research activities
focus on information systems, cloud computing, and
context-aware service-oriented computing. He leads numerous
projects related to the application of these domains.

Abderahman Kriouile is the founder
and CEO of the start up ‘Farasha
Systems’, which deals with the
optimization of the output of solar energy
power plants. He is also an associate
professor at SUPMTI Engineering School
in Rabat. Dr. Kriouile achieved a PhD in

2015 in “Formal Methods” applied to the verification of
embedded systems on micro-electronic chips. His PhD was
carried out in the framework of a collaboration between
“STMicroelectronics” and the french national research
organization “Inria”. Prior to that, Dr. Kriouile gained engineering
experience in the Avionics and Simulation department of Airbus
in Toulouse, France. Dr. Kriouile holds a MSc. in Embedded
System and Software Engineering from Telecom Nancy, France
obtained in 2011.

