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Abstract—The basic conception behind the given problem 
definition is to discuss the working, operations and complexity 
analyses of some advanced data structures. The Data 
structures that we have discussed further are Red-Black trees 
and Splay trees.Red-Black trees are self-balancing trees 
having the properties of conventional tree data structures 
along with an added property of color of the node which can 
be either red or black. This inclusion of the property of color 
as a single bit property ensured maintenance of balance in the 
tree during operations such as insertion or deletion of nodes in 
Red-Black trees. Splay trees, on the other hand, reduce the 
complexity of operations such as insertion and deletion in trees 
by splayingor making the node as the root node thereby 
reducing the time complexity of insertion and deletions of a 
node. Furthermore, amortized analysis, which emerged from 
aggregate analysis, is an optimistic approach that can be used 
to calculate the amount of time and space required for the 
execution of various operations. Amortized analysis considers 
the number of operations required during the execution of an 
algorithm rather than the number of inputs required thus 
overlooking the worst case run time per operation, which can 
be too pessimistic. 
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I. INTRODUCTION 

Data structures refer to the schemes which are used widely 
to store data in computer’s memory in such a way that 
performing various operations on it becomes easier and 
efficient in terms of cost and time. There are various data 
structures in use such as stacks, queues, linked lists, trees, 
and many more. To make storage and accessibility of data 
better than basic data structures, Advanced data structures 
are used. Advanced Data Structures are improvement over 
Basic data structures reducing the complexities of 
operations on data to logarithmic complexities.  
 
 
Manuscript Received November 09, 2018. 

Isha Ashish Bahendwar, Computer Science and 
Engineering, Shri Ramdeobaba College of Engineering and 
Management, Nagpur, Maharashtra, Mobile No. 
8390562363, bahendwaria@rknec.edu 
RuchitPurshottam Bhardwaj, Computer Science and 
Engineering, Shri Ramdeobaba College of Engineering and 
Management, Nagpur, Maharashtra, Mobile 
No.9766893526 
Prof. S. G. Mundada, Computer Science and Engineering, 
Shri Ramdeobaba College of Engineering and Management, 
Nagpur, Maharashtra, Mobile No. 9890597344 

It stores data in more efficient and practical way than basic 
data structures. Advanced data structures include data 
structures like, Red Black Trees, B trees, B+ Trees, Splay 
Trees, K-d Trees, Priority Search Trees, etc. Each of them 
has its own special feature which makes it unique and better 
than the others.A Red-Black tree is a binary search tree with 
a feature of balancing itself after any operation is performed 
on it. Its nodes have an extra feature of color. As the name 
suggests, they can be either red or black in color. These 
color bits are used to count the tree’s height and confirm 
that the tree possess all the basic properties of Red-Black 
tree structure, The Red-Black tree data structure is a binary 
search tree, which means that any node of that tree can have 
zero, one, or two children such that the value of right child 
is smaller than the value of its parent node and value of left 
child is greater than that of its parent node.  The operations 
that can be performed on Red-Black trees are: Search, 
Insert, and Delete.A Splay Tree is also a self-balancing tree 
data structure which has unique quality that recently 
accessed item is referred as the most frequently used item 
and becomes the root of the tree, so that next time if the 
same item is searched, it can be accessed as root node in 
easiest way.  For many sequences of non-random 
operations, splay trees perform better than other search 
trees, even when the specific pattern of the sequence is 
unknown. It possesses all the properties of a binary search 
tree, such as, its nodes can have either zero, one or two 
children and value of every left child is smaller than its 
parent nodes value and every right child’s value is greater 
than the value of its parent node’s value. Splaying is 
performed by rotations associated with steps. The steps that 
can be performed are: Zig step, Zag step, Zig-Zig, Zag-Zag 
step, Zig-Zag, Zag-Zig step 

The operations that can be performed on Splay 
trees by using the above steps are: Search, Insert, and 
Delete. 

II. EVOLUTION 

A. Red-Black Trees 
In 1972, Rudolf Bayer [2] invented a data structure that was 
a special order-4 case of a B-tree. These trees maintained all 
paths from root to leaf with the same number of nodes, 
creating perfectly balanced trees. However, they were not 
binary search trees. Bayer called them a "symmetric binary 
B-tree" in his paper and later they became popular as 2-3-4 
trees or just 2-4 trees.[3]In a 1978 paper, "A Dichromatic 
Framework for Balanced Trees", [4] Leonidas J. 
Guibas and Robert Sedgewick derived the red-black tree 
from the symmetric binary B-tree.[5] The color "red" was 
chosen because it was the best-looking color produced by 
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the color laser printer available to the authors while working 
at Xerox PARC.[6] Another response from Guibas states 
that since they had red and black color pens readily 
available, those two  were the chosen colors for the 
depiction of the property of colors in the trees and hence the 
name ‘Red-Black’ Trees.[7]In 1993, Arne Andersson 
introduced the idea of right leaning tree to simplify insert 
and delete operations.[8]In 1999, Chris Okasaki showed 
how to make the insert operation purely functional. Its 
balance function needed to take care of only 4 unbalanced 
cases and one default balanced case.[9]The original 
algorithm used 8 unbalanced cases, but Cormen et al. 
(2001) reduced those 8 unbalanced cases to 6 unbalanced 
cases.[1] To ease it all, the insertion operation in Red-Black 
trees could be implemented in just 46 lines of code 
according to Sedgewick.[10][11] In contrast to the right 
leaning tree proposed by Arne Andersson, the year 2008 
witnessed the proposition of left-leaning Red-Black trees 
which in turn simplified the algorithms.  

B. Splay Trees 
During the early years of advancements in Computer 
Science and data structures such as Binary Search trees, 
Daniel Sleator and Robert Tarjan contemplated and realized 
that many a times we are not interested in the individual 
time required for the execution of an operation but rather 
the total time for a sequence of operations. So, we could 
allow certain operations to be expensive as long as they are 
balanced out by a number of cheap operations. Around that 
time, the concept of self-adjusting list and move-to-front 
rule, which was Lastin First Out (LIFO) operation were 
prevalent. So, whenever we wanted to move a page out of 
the main memory, the Least Recently Used (LRU) page 
would be removed. In the case of Move-To-Front rule, 
whenever we accessed an item, the item would be moved to 
the front of the list so the next time it is accessed, it is cheap 
to do so. In 1985, a similar scheme was found for Binary 
Search Trees (BSTs) which got rid of the complicated 
rebalancing and was known as Splay Trees which were self-
adjusting in nature. The idea was that every time we did 
access a node, we perform rotation along the access path 
that moves the accessed item all the way to the root of the 
tree. So, if it is accessed again soon, it is going to be cheap 
to access. We don’t do it by rotating one at a time bottom 
up or one at a time top down, rather it is donedependingon 
the local structure and orientation of the tree because if we 
do it one at a time, it won’t work. Thus, the concept of 
‘locality of reference’ is associated with Splay Trees which 
were invented by Daniel Sleator and Robert Tarjan in 
1985.No node in the tree gets pushed down by more than a 
certain additive constant and it is simple to program. 
 

III. OPERATIONS ON TREES 

A. Red-Black Trees 
Rotations that can be performed on splay trees are: 

i. Right Rotation 
While rotating a tree in right direction about any node, its 
parent becomes its new right child and its left child remains 
the same. Its old right child becomes new right child’s left 
node and so on, until a proper tree is formed.  

ii. Left Rotation 
While rotating a tree in left direction about any node, its 
parent becomes its new left child and its right child remains 
the same. Its old left child becomes new left child’s right 
node and so on, until a proper tree is formed. 

 
The operations that can be performed on Red Black trees 
are: 

1. Search 
When we need to search an element in a Red-Black tree, the 
value of element to be searched is compared with value of 
root node. Let’s take the element to be searched as ‘k’.If k 
is equal to root, return the root node, Otherwise, if k<root, 
traverse in left subtree or if k>root, traverse in the left 
subtree. In this way, compare nodes with k until the tree is 
over. If element is found in the tree, return it, otherwise 
inform that the searched element does not exist in that tree. 

2. Insertion 
When z lies in the left branch of the tree: 
If child node i.e., the newly inserted node and its parent are 
red, then check color (sibling (parent (z))). If color (sibling 
(parent (z))) =Red, then simply recolor sibling (parent (z)), 
parent (z) and parent (parent (z)). Otherwise, check if z is in 
the right branch, then set z=parent(z) and left rotate at z, 
recolor parent(z), parent(parent(z)) and right rotate at 
parent(parent(z)). 
Set root node as black. 
When z lies in right branch of the tree, same as above clause 
with “right” and “left” exchanged. 

3. Deletion 
For x in left branch of the tree, 
Check the color of w i.e., sibling (x) 
Case 1:If color (w) = Red, then set color (w) = Black, 
Parent (x) = Red, Left Rotate at parent (x) and Set w = right 
child (parent (x))  
Case 2:If color (w) = Black and both children are Black 
then set color (w) = Red and Set x = parent (x) 
Case 3:If color (w) = Black, color (left child) = Red and 
color(w) = Black, then set color (Left child (w)) = Black, 
set color (w) = Red, Right rotate at w and Set w = right 
child (parent (x)) 
Case 4:If color (w) = Black and Right child (w) = Red then 
set color (w) = color (parent (x)), set color (parent (x)) = 
Black, set color (right child (w)) = Black, left rotate at 
parent (x), and set x as root node. 
Set color (root node) = Black 

B. Splay Trees 
 

Table 1: Operations performed on Splay Trees 

Operation Rotation Approach 
Zig  Right  
Zag  Left  

Zig-Zig Right Rotation, Right Rotation Top-Down 
Zag-Zag Left Rotation, Left Rotation Top-Down 
Zig-Zag Left Rotation, Right Rotation Bottom-Up 
Zag-Zig Right Rotation, Left Rotation Bottom-Up 
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Operations that can be performed on Splay Trees are: 

1. Search 
i. Find the position of the element. 

ii. Splay the tree at that element according to its 
position using different operations and rotations 
mentioned above. 

iii. The resultant tree will have the searched element as 
its root. 

2. Insertion 
i. Find an appropriate position for the element to be 

inserted according to the value of the nodes of tree 
and new element. 

ii. Insert the element at that position and splay the 
resultant tree at the newly inserted element. 

iii. The result will be a tree with newly inserted element 
as its root. 

3. Deletion 
i. Find the element to be deleted in the tree. 

ii. Splay the tree at that element. 
iii. When the element to be deleted becomes the root of 

the tree, delete the element. 
iv. The result we will get are two separate sub-trees 

whose roots were left and right child of the root. 
v. If left sub-tree is not null, splay the left sub-tree at 

the node with maximum value. And join the right 
sub-tree to it. 

vi. If left sub-tree is null, return the right sub-tree as it 
is. 

IV. AMORTIZED ANALYSIS AND COMPARISION 

Amortized analysis is a way of evaluating the complexity of 
an algorithm i.e., how much memory and time it consumes 
to execute. It is not the average case analysis of any 
algorithm. Costly and less costly operations are considered 
in amortized analysis over whole series of operations in the 
algorithm. Many factors like length of input and different 
type of input affect the analysis and its performance. It is 
based on the number of operations or sequence of 
operations instead of input sample. It is worst case analysis 
on sample input. 

A. Red-Black Trees 
Amortized analysis of Red-Black Trees is calculated in the 
basic operations on the tree. While calculating the worst-
case times, we generally sum the worst-case times of all the 
individual operations that are performed in order to arrive at 
a particular result. This might prove to be a pessimistic 
approach. Consequently, we are concerned with the total 
running time for that sequence of operations, not the 
individual running time of a single operation. Amortized 
analysis does just that. It takes the average of total running 
times of operations in a sequence rather than the total 
number of operations. 
 
 
 
 

Terms to be considered are: 

1. Credit of the nodes  
2. Total credit 

Note: Credits are given to the nodes which are BLACK in 
colour ONLY. 
Basis of assigning credits: 
 

Table 2: Basis of Assigning Credits 
 

Orientation Credit Assigned 
A Black node with 1 Red Child 0 

A Black node with 2 Black Children 1 
A Black node with 2 Red Children 2 

 
Bank’s View of Amortization: Robert Tarjan first proposed 
the Bank’s view of amortization. According to it, each time 
we perform a rotation after an update operation, we deposit 
some credit into the account and each time we complete the 
update operation without rebalancing the tree, we withdraw 
some credits from the account. The amount to be credited or 
debited from the account depends upon the type of rotation 
performed. Once the sequence of update operations has 
been completed, we get the lower and higher bounds of 
performance of that data structure, Red-Black trees in this 
case.  
The following equations can be used to calculate the 
amortized complexity of Red-Black Trees which were 
proposed by Tarjan. 

  (1) 
Where, Ai= Amortized time of ithoperation 
Ti = Actual time of the ith operation 

= Is the potential function 
 

 
 

    (2) 
where,  is the potential before the sequence of operations 

is the potential after complete sequence ofoperations. 
 
These formulae are applied for insertion and deletion in the 
following manner. 
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Table 3: Bottom Up Insertion Algorithm in Red-Black Tree 

 
Case Depiction 
1.a 

 
1.b 

 
2.a 

 
2.b 

 
3. 

 
4. 

 
5. 

 
 

 
 
 
 
 
 
 

 
Table 4: Rules for assigning credit to nodes during Insertion 
 

Condition Action on 
credits  

Attach a node to a black node and terminate 
insertion (Refer Table 1 Case 1.a, 1.b) 

-1 

Update colors and move up (Refer Table 1 
Case 2.a, 2.b) 

-1 

Perform single/double rotation and 
terminate (Refer Table 1 Case 4 and 5) 

+2 

 
 
Table 5: Bottom up Deletion Algorithm for Red-Black Tree 

 
Case Depiction 

1 

 
2 

 
3 

 
4 
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5 

 
6 

 
 
 

Table 6: Rules for assigning credit to nodes during Deletion 
 

Condition Action on 
credits 

Delete a black node and move up (Refer 
Table 2 Case 1) 

-1 

Update colors and move up (Refer Table 2 
Case 2) 

-2 

Update colors and terminate deletion 
(Refer Table 2 Case 4) 

-1 

Perform single rotation and terminate 
deletion (Refer Table 2 Case 5) 

-1/+2 

Perform double rotation and terminate 
deletion (Refer Table 2 Case 6) 

+2 

 
 
B. Splay Trees 

Amortized analysis of splay trees is calculated on the basis 
of operation performed on the tree. In the case of Splay 
Trees, worst case complexity is O(n) for search or splaying 
nodes. But, using amortized analysis we get O(log2n) for 
search and splaying nodes. 
 
Terms to be considered are:  
1. Rank of the node   
2. Credit of the node 
3. Total credit 

 
Amortized analysis for splay trees uses potential method to 
find out amortized complexity. Amortized complexity of a 
splay step iis given by: 

Ai= Ti + (Cr i – Cr i-1) 
Where,  Cri = Credit balance of tree after splay operation, 
Cr i-1 = Credit balance of tree before splay operation, 

T i = number of levels the target node raises. 
The value of Ti changes according to the operation being 
performed.  
 

1. For Zig/Zag operation, Ti = 1  
2. ForZig-Zig/Zig-Zag/Zag-Zig/Zag-Zagoperation, Ti 

= 2. 
Cr(u) = r(u) = log 2 |T(u)| 

Credit of tree is summation of credits of all the nodes, 
Cr i= ∑iϵTi(u)ri (u) 
 

Observations: 
Amortized complexity Ai of a splay tree for, 
Zig-Zig or Zag-Zag: Ai< 3(ri(u)-ri-1(u)), 
Zig-Zag or Zag-Zig:Ai< 2(ri(u)-ri-1(u)), 
Zig or Zag operation: Ai< 1 + (ri(u)-ri-1(u)). 
 

V. EXAMPLES 

A. Red Black Trees  
 
 
 

 
 
 
 
 

 
Fig. 1: Example of Red-Black Tree 

 
 

 
 
 
 
 
 
 
 
 

 
Fig. 2: Insertion Process 

 
Example: Insert 25 in the following Red-Black Tree 
The above insertion comes under case 2.a and 2.b 

 
Table 7: Listing and Calculation of Potential during 
Insertion 

 
Nodes 8 5 17 15 18 25 Potential 

Rbefore 1 1 2 - - - 4 

Rafter 0 1 - 1 0 - 2 

 
Assumption of Tiis done by the following table. 

After 
Inserti

on 
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Table 8: TiAssumption 

 
Operation Assumed Value of Ti 

Left Rotate 1 
Right Rotate 1 

Recolor Nodes Number of Nodes Recolored 
(E.g. If 2 nodes are 

recolored, then Ti= 2) 
 
Based on the above table, the value of Ti= 4 in our case (z = 
node inserted. Nodes recolored:p(z), p(p(z)), sibling of p(z) 
and root (already black in color)) 
According to equation 1, Amortized Time, Ai = 4–2–4 = -2 
Using Equation 2, Ti = 4 – 2 + (-2) = 0 
Thus, the complexity is reduced from a linear complexity 
O(n) to a logarithmic complexity O(log n). 
 

 
 

Fig. 3: Example of Red-Black Tree 
 

 
 
 
 
 
 
 
 

Fig. 4: Deletion Process 
 
Example 2: Deleteelement 40 from the given Red-Black 
Tree 
 
Table 9: Listing and Calculation of Potential duringDeletion 

Nodes 8 5 17 15 25 18 40 Potential 

Rbefore 0 1 - 1 2 - - 4 

Rafter 0 1 - 1 - 1 - 3 

 
Based on the assumption on Table Number 6, the assumed 
value of Ti is 0 (Since the node to be deleted is Red in color, 
no extra updating operation is performed and the node is 
directly deleted) 
According to equation 1, Amortized Time, Ai=0–3 –4 =-7 
Using equation 2, Ti = 4 – 3 + (-7) = -6 
Thus, the complexity is reduced from a linear complexity 
O(n) to a logarithmic complexity O(log n). 
 
 
 
 
 

 

B. Splay Trees 
 

Example: Splay the given tree at 81.  

 
 

Fig. 5: Example of Splay Tree 
 

Solution: 

 
 

Fig. 6: Given splay tree 

 
 

Fig. 7: Splay tree after Zig-Zag operation 

 

After Deletion 
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Table 10: Potential Calculation

 
 

Fig. 8: Splay tree after Zag-Zag operation 
 

 
 

Fig. 9: Splay tree after Zig-Zig operation 

For i = 1, 
A1= t1+ Cr 1 – Cr 0 
     =2+[(log2 1 +log2 1 +log2 3) – (log2 2 + log2 3 + log2 1)] 
     = 1 
 
A1 = 1 in amortized complexity 
A1< 2 (r1 (81) – r0 (81)) 
A1< 2 (log2 3 - 0) 
1 < 2 (log2 3) 
Therefore, True. 
 
For i = 2, 
A2 = t2 + Cr 2 – Cr 1 
     = 2 + [(log2 5 + log2 4 + log2 1+ log2 1 + log2 3) –  

(log2 1 + log2 3 + log2 1 + log2 1 + log2 5)] 
     = 0 
 
A2 = 0 in amortized complexity 
A2 < 3 (r2 (81) – r1 (81)) 

A2 < 3 (log2 5 - log2 3) 
0 < 3 (log2 5 - log2 3) 
Therefore, True. 
 
For i = 3, 
A3 = t3 + Cr 3 – Cr 2 
     = 2 + [(log2 5 + log2 4 + log2 1+ log2 1 + log2 3) –  

(log2 1 + log2 3 + log2 1 + log2 1 + log2 5)] 
     = 0 
 
A3 = 0 in amortized complexity 
A3 < 3 (r3 (81) – r2 (81)) 
A3 < 3 (log2 7 - log2 5) 
0 < 3 (log27 - log2 5) 
Therefore, True. 
 

VI. APPLICATIONS 

A. Red Black Trees  
i. The scheduler of Linux kernel uses Red Black 

trees as its data structure. The scheduler was 
merged into the 2.6.23 release of Linux kernel 
and its name is Completely Fair 
Scheduler (CFS). It handles CPU resource 
allocation for executing processes and aims to 
maximize overall CPU utilization while also 
maximizing interactive performance. 

ii. Java uses Red Black tree data structure to 
implement various tree classes of it. Some of 
them arejava.util.TreeMapandjava.util.TreeSet. 

iii. C++ STL uses Red Black trees for map, 
multimap, and multiset. 

 
B. Splay Trees 

i. Search Engine Optimization 
ii. Used for implementation of cache algorithms  

iii. Can be used in Garbage collectors  
iv. Used in Network Routers 

 

VII. CONCLUSION 
1.Red black trees and splay trees are two of the most 
beneficial advanced tree data structures which possess 
unique features. Red black trees are used in those cases 
where insertions and deletions are rare and accessibility of 
data needs to be fast and efficient. 
2.The amortized analysis of red black tree takes into 
consideration the time taken by a sequence of operation to 
be performed during updating rather than the time taken for 
a single operation to take place. It also considers the cases 
where particular insertions or deletions fit into. 
3. Splay trees are widely used in areas where recently 
accessed files and least recently accessed files are needed.  
Amortized analysis of splay trees is calculated and verified 
with the observations according to the operation performed. 

  100 85 70 78 

R before ZIG- 
ZAG 

Log27 Log2 6 Log2 5 Log2 4 

R after Log27 Log2 6 Log2 5 Log2 4 

R before ZAG-
ZAG 

Log2 7 Log2 6 Log2 5 Log2 4 

R after Log2 7 Log2 6 Log2 1 Log2 3 

R before ZIG-
ZIG 

Log2 7 Log2 6 Log2 1 Log2 3 

R after Log2 1 Log2 3 Log2 1 Log2 3 
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