
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November2018

DOI: 10.21276/ijircst.2018.6.6.2

Copyright © 2018. Innovative Research Publication. All Rights Reserve 121

Amortized Complexity Analysis for Red-Black
Trees and Splay Trees

Isha Ashish Bahendwar, RuchitPurshottam Bhardwaj, Prof. S.G. Mundada

Abstract—The basic conception behind the given problem
definition is to discuss the working, operations and complexity
analyses of some advanced data structures. The Data
structures that we have discussed further are Red-Black trees
and Splay trees.Red-Black trees are self-balancing trees
having the properties of conventional tree data structures
along with an added property of color of the node which can
be either red or black. This inclusion of the property of color
as a single bit property ensured maintenance of balance in the
tree during operations such as insertion or deletion of nodes in
Red-Black trees. Splay trees, on the other hand, reduce the
complexity of operations such as insertion and deletion in trees
by splayingor making the node as the root node thereby
reducing the time complexity of insertion and deletions of a
node. Furthermore, amortized analysis, which emerged from
aggregate analysis, is an optimistic approach that can be used
to calculate the amount of time and space required for the
execution of various operations. Amortized analysis considers
the number of operations required during the execution of an
algorithm rather than the number of inputs required thus
overlooking the worst case run time per operation, which can
be too pessimistic.

Keywords- Red-Black trees, Splay trees, Ammortization,
Complexity, Insertion, Deletion

I. INTRODUCTION

Data structures refer to the schemes which are used widely
to store data in computer’s memory in such a way that
performing various operations on it becomes easier and
efficient in terms of cost and time. There are various data
structures in use such as stacks, queues, linked lists, trees,
and many more. To make storage and accessibility of data
better than basic data structures, Advanced data structures
are used. Advanced Data Structures are improvement over
Basic data structures reducing the complexities of
operations on data to logarithmic complexities.

Manuscript Received November 09, 2018.

Isha Ashish Bahendwar, Computer Science and
Engineering, Shri Ramdeobaba College of Engineering and
Management, Nagpur, Maharashtra, Mobile No.
8390562363, bahendwaria@rknec.edu
RuchitPurshottam Bhardwaj, Computer Science and
Engineering, Shri Ramdeobaba College of Engineering and
Management, Nagpur, Maharashtra, Mobile
No.9766893526
Prof. S. G. Mundada, Computer Science and Engineering,
Shri Ramdeobaba College of Engineering and Management,
Nagpur, Maharashtra, Mobile No. 9890597344

It stores data in more efficient and practical way than basic
data structures. Advanced data structures include data
structures like, Red Black Trees, B trees, B+ Trees, Splay
Trees, K-d Trees, Priority Search Trees, etc. Each of them
has its own special feature which makes it unique and better
than the others.A Red-Black tree is a binary search tree with
a feature of balancing itself after any operation is performed
on it. Its nodes have an extra feature of color. As the name
suggests, they can be either red or black in color. These
color bits are used to count the tree’s height and confirm
that the tree possess all the basic properties of Red-Black
tree structure, The Red-Black tree data structure is a binary
search tree, which means that any node of that tree can have
zero, one, or two children such that the value of right child
is smaller than the value of its parent node and value of left
child is greater than that of its parent node. The operations
that can be performed on Red-Black trees are: Search,
Insert, and Delete.A Splay Tree is also a self-balancing tree
data structure which has unique quality that recently
accessed item is referred as the most frequently used item
and becomes the root of the tree, so that next time if the
same item is searched, it can be accessed as root node in
easiest way. For many sequences of non-random
operations, splay trees perform better than other search
trees, even when the specific pattern of the sequence is
unknown. It possesses all the properties of a binary search
tree, such as, its nodes can have either zero, one or two
children and value of every left child is smaller than its
parent nodes value and every right child’s value is greater
than the value of its parent node’s value. Splaying is
performed by rotations associated with steps. The steps that
can be performed are: Zig step, Zag step, Zig-Zig, Zag-Zag
step, Zig-Zag, Zag-Zig step

The operations that can be performed on Splay
trees by using the above steps are: Search, Insert, and
Delete.

II. EVOLUTION

A. Red-Black Trees
In 1972, Rudolf Bayer [2] invented a data structure that was
a special order-4 case of a B-tree. These trees maintained all
paths from root to leaf with the same number of nodes,
creating perfectly balanced trees. However, they were not
binary search trees. Bayer called them a "symmetric binary
B-tree" in his paper and later they became popular as 2-3-4
trees or just 2-4 trees.[3]In a 1978 paper, "A Dichromatic
Framework for Balanced Trees", [4] Leonidas J.
Guibas and Robert Sedgewick derived the red-black tree
from the symmetric binary B-tree.[5] The color "red" was
chosen because it was the best-looking color produced by

Amortized Complexity Analysis for Red-Black Trees and Splay Trees

Copyright © 2018. Innovative Research Publications. All Rights Reserve 122

the color laser printer available to the authors while working
at Xerox PARC.[6] Another response from Guibas states
that since they had red and black color pens readily
available, those two were the chosen colors for the
depiction of the property of colors in the trees and hence the
name ‘Red-Black’ Trees.[7]In 1993, Arne Andersson
introduced the idea of right leaning tree to simplify insert
and delete operations.[8]In 1999, Chris Okasaki showed
how to make the insert operation purely functional. Its
balance function needed to take care of only 4 unbalanced
cases and one default balanced case.[9]The original
algorithm used 8 unbalanced cases, but Cormen et al.
(2001) reduced those 8 unbalanced cases to 6 unbalanced
cases.[1] To ease it all, the insertion operation in Red-Black
trees could be implemented in just 46 lines of code
according to Sedgewick.[10][11] In contrast to the right
leaning tree proposed by Arne Andersson, the year 2008
witnessed the proposition of left-leaning Red-Black trees
which in turn simplified the algorithms.

B. Splay Trees
During the early years of advancements in Computer
Science and data structures such as Binary Search trees,
Daniel Sleator and Robert Tarjan contemplated and realized
that many a times we are not interested in the individual
time required for the execution of an operation but rather
the total time for a sequence of operations. So, we could
allow certain operations to be expensive as long as they are
balanced out by a number of cheap operations. Around that
time, the concept of self-adjusting list and move-to-front
rule, which was Lastin First Out (LIFO) operation were
prevalent. So, whenever we wanted to move a page out of
the main memory, the Least Recently Used (LRU) page
would be removed. In the case of Move-To-Front rule,
whenever we accessed an item, the item would be moved to
the front of the list so the next time it is accessed, it is cheap
to do so. In 1985, a similar scheme was found for Binary
Search Trees (BSTs) which got rid of the complicated
rebalancing and was known as Splay Trees which were self-
adjusting in nature. The idea was that every time we did
access a node, we perform rotation along the access path
that moves the accessed item all the way to the root of the
tree. So, if it is accessed again soon, it is going to be cheap
to access. We don’t do it by rotating one at a time bottom
up or one at a time top down, rather it is donedependingon
the local structure and orientation of the tree because if we
do it one at a time, it won’t work. Thus, the concept of
‘locality of reference’ is associated with Splay Trees which
were invented by Daniel Sleator and Robert Tarjan in
1985.No node in the tree gets pushed down by more than a
certain additive constant and it is simple to program.

III. OPERATIONS ON TREES

A. Red-Black Trees
Rotations that can be performed on splay trees are:

i. Right Rotation
While rotating a tree in right direction about any node, its
parent becomes its new right child and its left child remains
the same. Its old right child becomes new right child’s left
node and so on, until a proper tree is formed.

ii. Left Rotation
While rotating a tree in left direction about any node, its
parent becomes its new left child and its right child remains
the same. Its old left child becomes new left child’s right
node and so on, until a proper tree is formed.

The operations that can be performed on Red Black trees
are:

1. Search
When we need to search an element in a Red-Black tree, the
value of element to be searched is compared with value of
root node. Let’s take the element to be searched as ‘k’.If k
is equal to root, return the root node, Otherwise, if k<root,
traverse in left subtree or if k>root, traverse in the left
subtree. In this way, compare nodes with k until the tree is
over. If element is found in the tree, return it, otherwise
inform that the searched element does not exist in that tree.

2. Insertion
When z lies in the left branch of the tree:
If child node i.e., the newly inserted node and its parent are
red, then check color (sibling (parent (z))). If color (sibling
(parent (z))) =Red, then simply recolor sibling (parent (z)),
parent (z) and parent (parent (z)). Otherwise, check if z is in
the right branch, then set z=parent(z) and left rotate at z,
recolor parent(z), parent(parent(z)) and right rotate at
parent(parent(z)).
Set root node as black.
When z lies in right branch of the tree, same as above clause
with “right” and “left” exchanged.

3. Deletion
For x in left branch of the tree,
Check the color of w i.e., sibling (x)
Case 1:If color (w) = Red, then set color (w) = Black,
Parent (x) = Red, Left Rotate at parent (x) and Set w = right
child (parent (x))
Case 2:If color (w) = Black and both children are Black
then set color (w) = Red and Set x = parent (x)
Case 3:If color (w) = Black, color (left child) = Red and
color(w) = Black, then set color (Left child (w)) = Black,
set color (w) = Red, Right rotate at w and Set w = right
child (parent (x))
Case 4:If color (w) = Black and Right child (w) = Red then
set color (w) = color (parent (x)), set color (parent (x)) =
Black, set color (right child (w)) = Black, left rotate at
parent (x), and set x as root node.
Set color (root node) = Black

B. Splay Trees

Table 1: Operations performed on Splay Trees

Operation Rotation Approach
Zig Right
Zag Left

Zig-Zig Right Rotation, Right Rotation Top-Down
Zag-Zag Left Rotation, Left Rotation Top-Down
Zig-Zag Left Rotation, Right Rotation Bottom-Up
Zag-Zig Right Rotation, Left Rotation Bottom-Up

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November2018

DOI: 10.21276/ijircst.2018.6.6.2

Copyright © 2018. Innovative Research Publication. All Rights Reserve 123

Operations that can be performed on Splay Trees are:

1. Search
i. Find the position of the element.

ii. Splay the tree at that element according to its
position using different operations and rotations
mentioned above.

iii. The resultant tree will have the searched element as
its root.

2. Insertion
i. Find an appropriate position for the element to be

inserted according to the value of the nodes of tree
and new element.

ii. Insert the element at that position and splay the
resultant tree at the newly inserted element.

iii. The result will be a tree with newly inserted element
as its root.

3. Deletion
i. Find the element to be deleted in the tree.

ii. Splay the tree at that element.
iii. When the element to be deleted becomes the root of

the tree, delete the element.
iv. The result we will get are two separate sub-trees

whose roots were left and right child of the root.
v. If left sub-tree is not null, splay the left sub-tree at

the node with maximum value. And join the right
sub-tree to it.

vi. If left sub-tree is null, return the right sub-tree as it
is.

IV. AMORTIZED ANALYSIS AND COMPARISION

Amortized analysis is a way of evaluating the complexity of
an algorithm i.e., how much memory and time it consumes
to execute. It is not the average case analysis of any
algorithm. Costly and less costly operations are considered
in amortized analysis over whole series of operations in the
algorithm. Many factors like length of input and different
type of input affect the analysis and its performance. It is
based on the number of operations or sequence of
operations instead of input sample. It is worst case analysis
on sample input.

A. Red-Black Trees
Amortized analysis of Red-Black Trees is calculated in the
basic operations on the tree. While calculating the worst-
case times, we generally sum the worst-case times of all the
individual operations that are performed in order to arrive at
a particular result. This might prove to be a pessimistic
approach. Consequently, we are concerned with the total
running time for that sequence of operations, not the
individual running time of a single operation. Amortized
analysis does just that. It takes the average of total running
times of operations in a sequence rather than the total
number of operations.

Terms to be considered are:

1. Credit of the nodes
2. Total credit

Note: Credits are given to the nodes which are BLACK in
colour ONLY.
Basis of assigning credits:

Table 2: Basis of Assigning Credits

Orientation Credit Assigned
A Black node with 1 Red Child 0

A Black node with 2 Black Children 1
A Black node with 2 Red Children 2

Bank’s View of Amortization: Robert Tarjan first proposed
the Bank’s view of amortization. According to it, each time
we perform a rotation after an update operation, we deposit
some credit into the account and each time we complete the
update operation without rebalancing the tree, we withdraw
some credits from the account. The amount to be credited or
debited from the account depends upon the type of rotation
performed. Once the sequence of update operations has
been completed, we get the lower and higher bounds of
performance of that data structure, Red-Black trees in this
case.
The following equations can be used to calculate the
amortized complexity of Red-Black Trees which were
proposed by Tarjan.

 (1)
Where, Ai= Amortized time of ithoperation
Ti = Actual time of the ith operation

= Is the potential function

 (2)
where, is the potential before the sequence of operations

is the potential after complete sequence ofoperations.

These formulae are applied for insertion and deletion in the
following manner.

Amortized Complexity Analysis for Red-Black Trees and Splay Trees

Copyright © 2018. Innovative Research Publications. All Rights Reserve 124

Table 3: Bottom Up Insertion Algorithm in Red-Black Tree

Case Depiction
1.a

1.b

2.a

2.b

3.

4.

5.

Table 4: Rules for assigning credit to nodes during Insertion

Condition Action on
credits

Attach a node to a black node and terminate
insertion (Refer Table 1 Case 1.a, 1.b)

-1

Update colors and move up (Refer Table 1
Case 2.a, 2.b)

-1

Perform single/double rotation and
terminate (Refer Table 1 Case 4 and 5)

+2

Table 5: Bottom up Deletion Algorithm for Red-Black Tree

Case Depiction

1

2

3

4

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November2018

DOI: 10.21276/ijircst.2018.6.6.2

Copyright © 2018. Innovative Research Publication. All Rights Reserve 125

5

6

Table 6: Rules for assigning credit to nodes during Deletion

Condition Action on
credits

Delete a black node and move up (Refer
Table 2 Case 1)

-1

Update colors and move up (Refer Table 2
Case 2)

-2

Update colors and terminate deletion
(Refer Table 2 Case 4)

-1

Perform single rotation and terminate
deletion (Refer Table 2 Case 5)

-1/+2

Perform double rotation and terminate
deletion (Refer Table 2 Case 6)

+2

B. Splay Trees

Amortized analysis of splay trees is calculated on the basis
of operation performed on the tree. In the case of Splay
Trees, worst case complexity is O(n) for search or splaying
nodes. But, using amortized analysis we get O(log2n) for
search and splaying nodes.

Terms to be considered are:
1. Rank of the node
2. Credit of the node
3. Total credit

Amortized analysis for splay trees uses potential method to
find out amortized complexity. Amortized complexity of a
splay step iis given by:

Ai= Ti + (Cr i – Cr i-1)
Where, Cri = Credit balance of tree after splay operation,
Cr i-1 = Credit balance of tree before splay operation,

T i = number of levels the target node raises.
The value of Ti changes according to the operation being
performed.

1. For Zig/Zag operation, Ti = 1
2. ForZig-Zig/Zig-Zag/Zag-Zig/Zag-Zagoperation, Ti

= 2.
Cr(u) = r(u) = log 2 |T(u)|

Credit of tree is summation of credits of all the nodes,
Cr i= ∑iϵTi(u)ri (u)

Observations:
Amortized complexity Ai of a splay tree for,
Zig-Zig or Zag-Zag: Ai< 3(ri(u)-ri-1(u)),
Zig-Zag or Zag-Zig:Ai< 2(ri(u)-ri-1(u)),
Zig or Zag operation: Ai< 1 + (ri(u)-ri-1(u)).

V. EXAMPLES

A. Red Black Trees

Fig. 1: Example of Red-Black Tree

Fig. 2: Insertion Process

Example: Insert 25 in the following Red-Black Tree
The above insertion comes under case 2.a and 2.b

Table 7: Listing and Calculation of Potential during
Insertion

Nodes 8 5 17 15 18 25 Potential

Rbefore 1 1 2 - - - 4

Rafter 0 1 - 1 0 - 2

Assumption of Tiis done by the following table.

After
Inserti

on

Amortized Complexity Analysis for Red-Black Trees and Splay Trees

Copyright © 2018. Innovative Research Publications. All Rights Reserve 126

Table 8: TiAssumption

Operation Assumed Value of Ti

Left Rotate 1
Right Rotate 1

Recolor Nodes Number of Nodes Recolored
(E.g. If 2 nodes are

recolored, then Ti= 2)

Based on the above table, the value of Ti= 4 in our case (z =
node inserted. Nodes recolored:p(z), p(p(z)), sibling of p(z)
and root (already black in color))
According to equation 1, Amortized Time, Ai = 4–2–4 = -2
Using Equation 2, Ti = 4 – 2 + (-2) = 0
Thus, the complexity is reduced from a linear complexity
O(n) to a logarithmic complexity O(log n).

Fig. 3: Example of Red-Black Tree

Fig. 4: Deletion Process

Example 2: Deleteelement 40 from the given Red-Black
Tree

Table 9: Listing and Calculation of Potential duringDeletion

Nodes 8 5 17 15 25 18 40 Potential

Rbefore 0 1 - 1 2 - - 4

Rafter 0 1 - 1 - 1 - 3

Based on the assumption on Table Number 6, the assumed
value of Ti is 0 (Since the node to be deleted is Red in color,
no extra updating operation is performed and the node is
directly deleted)
According to equation 1, Amortized Time, Ai=0–3 –4 =-7
Using equation 2, Ti = 4 – 3 + (-7) = -6
Thus, the complexity is reduced from a linear complexity
O(n) to a logarithmic complexity O(log n).

B. Splay Trees

Example: Splay the given tree at 81.

Fig. 5: Example of Splay Tree

Solution:

Fig. 6: Given splay tree

Fig. 7: Splay tree after Zig-Zag operation

After Deletion

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November2018

DOI: 10.21276/ijircst.2018.6.6.2

Copyright © 2018. Innovative Research Publication. All Rights Reserve 127

Table 10: Potential Calculation

Fig. 8: Splay tree after Zag-Zag operation

Fig. 9: Splay tree after Zig-Zig operation

For i = 1,
A1= t1+ Cr 1 – Cr 0
 =2+[(log2 1 +log2 1 +log2 3) – (log2 2 + log2 3 + log2 1)]
 = 1

A1 = 1 in amortized complexity
A1< 2 (r1 (81) – r0 (81))
A1< 2 (log2 3 - 0)
1 < 2 (log2 3)
Therefore, True.

For i = 2,
A2 = t2 + Cr 2 – Cr 1
 = 2 + [(log2 5 + log2 4 + log2 1+ log2 1 + log2 3) –

(log2 1 + log2 3 + log2 1 + log2 1 + log2 5)]
 = 0

A2 = 0 in amortized complexity
A2 < 3 (r2 (81) – r1 (81))

A2 < 3 (log2 5 - log2 3)
0 < 3 (log2 5 - log2 3)
Therefore, True.

For i = 3,
A3 = t3 + Cr 3 – Cr 2
 = 2 + [(log2 5 + log2 4 + log2 1+ log2 1 + log2 3) –

(log2 1 + log2 3 + log2 1 + log2 1 + log2 5)]
 = 0

A3 = 0 in amortized complexity
A3 < 3 (r3 (81) – r2 (81))
A3 < 3 (log2 7 - log2 5)
0 < 3 (log27 - log2 5)
Therefore, True.

VI. APPLICATIONS

A. Red Black Trees
i. The scheduler of Linux kernel uses Red Black

trees as its data structure. The scheduler was
merged into the 2.6.23 release of Linux kernel
and its name is Completely Fair
Scheduler (CFS). It handles CPU resource
allocation for executing processes and aims to
maximize overall CPU utilization while also
maximizing interactive performance.

ii. Java uses Red Black tree data structure to
implement various tree classes of it. Some of
them arejava.util.TreeMapandjava.util.TreeSet.

iii. C++ STL uses Red Black trees for map,
multimap, and multiset.

B. Splay Trees

i. Search Engine Optimization
ii. Used for implementation of cache algorithms

iii. Can be used in Garbage collectors
iv. Used in Network Routers

VII. CONCLUSION
1.Red black trees and splay trees are two of the most
beneficial advanced tree data structures which possess
unique features. Red black trees are used in those cases
where insertions and deletions are rare and accessibility of
data needs to be fast and efficient.
2.The amortized analysis of red black tree takes into
consideration the time taken by a sequence of operation to
be performed during updating rather than the time taken for
a single operation to take place. It also considers the cases
where particular insertions or deletions fit into.
3. Splay trees are widely used in areas where recently
accessed files and least recently accessed files are needed.
Amortized analysis of splay trees is calculated and verified
with the observations according to the operation performed.

 100 85 70 78

R before ZIG-
ZAG

Log27 Log2 6 Log2 5 Log2 4

R after Log27 Log2 6 Log2 5 Log2 4

R before ZAG-
ZAG

Log2 7 Log2 6 Log2 5 Log2 4

R after Log2 7 Log2 6 Log2 1 Log2 3

R before ZIG-
ZIG

Log2 7 Log2 6 Log2 1 Log2 3

R after Log2 1 Log2 3 Log2 1 Log2 3

Amortized Complexity Analysis for Red-Black Trees and Splay Trees

Copyright © 2018. Innovative Research Publications. All Rights Reserve 128

ACKNOWLEGMENT

This idea for this paper was supported by the Computer
Science and Engineering Department We thank our
professors from Shri Ramdeobaba College of Engineering
and Management who provided insight and expertise that
greatly assisted the research, although they may not agree
with all of the interpretations/conclusions of this paper.
We thank Prof. ShyamalMundada, Assistant Professor,
RCOEM for assistance with the concept of Red-Black and
Splay Trees.We would also like to show our gratitude to the
Dr. M.B. Chandak, HOD, CSE, RCOEM for sharing their
pearls of wisdom with us during the course of this research
and providing us with any required resources, and we thank
3 “anonymous” reviewers for their so-called insights.
Finally, we would like to mention that any errors in the
paper are our own and should not tarnish the reputations of
these esteemed persons.

REFERENCES

[1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest,
Ronald L.; Stein, Clifford (2001). "Red–Black Trees".
Introduction to Algorithms (second ed.). MIT Press. pp.
273–301. ISBN 0-262-03293-7.

[2] Rudolf Bayer (1972). "Symmetric binary B-Trees: Data
structure and maintenance algorithms". Acta
Informatica. 1 (4): 290–306. doi:10.1007/BF00289509.

[3] Drozdek, Adam. Data Structures and Algorithms in
Java (2 ed.). Sams Publishing. p. 323. ISBN
0534376681.

[4] Leonidas J. Guibas and Robert Sedgewick (1978). "A
Dichromatic Framework for Balanced Trees".
Proceedings of the 19th Annual Symposium on
Foundations of Computer Science. pp. 8–21.
doi:10.1109/SFCS.1978.3.

[5] "Red Black Trees". eternallyconfuzzled.com. Retrieved
2015-09-02.

[6] Robert Sedgewick (2012). Red-Black BSTs. Coursera.
A lot of people ask why did we use the name red–
black. Well, we invented this data structure, this way of
looking at balanced trees, at Xerox PARC which was
the home of the personal computer and many other
innovations that we live with today entering[sic]
graphic user interfaces, ethernet and object-oriented
programmings[sic] and many other things. But one of
the things that was invented there was laser printing
and we were very excited to have nearby color laser
printer that could print things out in color and out of the
colors the red looked the best. So, that’s why we picked
the color red to distinguish red links, the types of links,
in three nodes. So, that’s an answer to the question for
people that have been asking.

[7] "Where does the term "Red/Black Tree" come from?".
programmers.stackexchange.com. Retrieved 2015-09-
02.

[8] Andersson, Arne (1993-08-11). Dehne, Frank; Sack,
Jörg-Rüdiger; Santoro, Nicola; Whitesides, Sue, eds.
"Balanced search trees made simple" (PDF).
Algorithms and Data Structures (Proceedings). Lecture
Notes in Computer Science. Springer-Verlag Berlin
Heidelberg. 709: 60–71. doi:10.1007/3-540-57155-
8_236. ISBN 978-3-540-57155-1. Archived from the
original on 2000-03-17.

[9] Okasaki, Chris (1999-01-01). "Red-black trees in a
functional setting" (PS). Journal of Functional
Programming. 9 (4): 471–477.
doi:10.1017/S0956796899003494. ISSN 1469-7653.

[10] Sedgewick, Robert (1983). Algorithms (1st ed.).
Addison-Wesley. ISBN 0-201-06672-6.

[11] Sedgewick, Robert; Wayne, Kevin.
"RedBlackBST.java". algs4.cs.princeton.edu. Retrieved
7 April 2018.

