

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November 2018

DOI: 10.21276/ijircst.2018.6.6.1

Copyright © 2018. Innovative Research Publications. All Rights Reserve 117

Effective Techniques to Improve Network Load
Balancing for Parallel Computation Using RMI

Nazmin Akter, Fuad Ahmed, Nusrat Jahan Shanta

Abstract— For Parallel Computing Java Remote
Method Invocation (RMI) provides a high
performance flexible type of procedure. In current
Java usage, RMI system is not very much efficient for
communication. In this paper we have presented
Distributed Parallel Computing using efficient
multithreading algorithm and RMI system within 8
hosts. The hosts will carry out Prime number
calculations that will also show how many prime
numbers are there in the given number (user input).
In single host this calculation will take much time &
instructions are executed one after another. We have
aimed at distributing the task among multiple hosts
where the task will execute concurrently. For
concurrency we have used multithreading. The results
also show that the proposed system’s performance
increases when we use more highly configured PC.

Index Terms—Concurrency, distributed parallel
computing, multiple hosts, multithreading, RMI

I. INTRODUCTION

 Software development is advancing at a praiseworthy
faster pace, Many software industries are developing
applications that are made for the same purpose, we can
only say which one of them is optimum based on their
performance, and the faster it is the more likely it will get
noticed and praised by the users. Thus it is more
important for software professionals to develop the
software using parallel computing which saves time,
allowing the execution of applications in a shorter wall-
clock time [2] and Java’s RMI offers interesting
opportunities to developers to build such applications.

Manuscript received November 09, 2018.

 Nazmin Akter, Department of Computer Science &
Engineering, Metropolitan University Zindabazar, Sylhet-
3100, Bangladesh (e-mail: nazmin@metrouni.edu.bd).
 Fuad Ahmed, Department of Computer Science &
Engineering, Metropolitan University Zindabazar, Sylhet-
3100, Bangladesh (e-mail: fahmed@metrouni.edu.bd).
 Nusrat Jahan Shanta, Department of Computer
Science & Engineering, Metropolitan University
Zindabazar, Sylhet-3100, Bangladesh
(e-mail: shanta.metro@gmail.com).

RMI’s design core goal is to support highly flexible
programming of distributed applications including a
seamless integration with Java’s object model,
heterogeneity and flexibility [5]. Threads provide an
efficient and effective paradigm for utilizing tightly
coupled systems and RMI [3]. This paper shows the
result of how multiple hosts can concurrently perform the
task significantly for faster using the RMI system than a
single host where calculations take much time &
instructions are executed one by one.

II. REMOTE METHOD INVOCATION

A. Introduction of RMI
RMI is a mechanism that comprises two separate
programs, a server and a client. The server creates some
remote objects, makes references to these objects
accessible, and waits for clients to invoke methods on
these objects. The client program obtains a remote
reference to one or more remote objects on a server and
then invokes methods on them. In this mechanism the
server and the client communicate and pass information
back and forth. It is referred as distributed object
application. It is relatively easy to use & remarkably
powerful technology and also allows the programmers to
develop distributed Java programs with the same syntax
and semantics used for non-distributed programs.

B. RMI Architecture
The RMI architecture defines how objects behave, how
and when exceptions can occur, how memory is
managed, and how parameters are passed to, and returned
from, remote methods. RMI architecture creates a system
that extends the safety and robustness of the java
architecture to the Java architecture to the distributed
computing world.

C. Interfaces: The Heart of RMI
The architecture is based on one important principle: the
definition of behavior and the implementation of that
behavior. RMI allows the code that defines the behavior
and the code that also implements the behavior to remain
separate and to run on separate JVMs [4]. In RMI, the
definition of a remote service is coded using a Java
interface. The implementation of the remote service is
coded in a class. Therefore, the key to understanding RMI
is to remember that interfaces define behavior and classes
define implementation.

Effective Techniques to Improve Network Load Balancing for Parallel Computation Using RMI

Copyright © 2018. Innovative Research Publications. All Rights Reserve 118

Fig 2A: the diagram illustrates this separation.

It supports two classes that implement the same interface.
The first class is the implementation of the behavior, and
it runs on the server. The second class acts as a
proxy/stub for the remote service and it runs on the client.
A client program makes method calls on the proxy object,
RMI sends the request to the remote JVM, and forwards
it to the implementation. Provided by the implementation
are sent back to the proxy and then to the client’s
program.

Fig 2B: diagram of RMI system implementing

same interface.

D. How RMI works?
On a host machine, a server program creates a remote
service by first creating a local object that implements
that service. Next, it exports that object to RMI. When the
object is exported, RMI creates a listening service that
waits for clients to connect and request the service. After
exporting, the server registers the object in the RMI
Registry under a public name. On the client side, the RMI
Registry is accessed through the static class Naming. It
provides the method lookup () that a client uses to query a
registry. The method lookup () accepts a URL that
specifies the server host name and the name of the desired
service [7]. The method returns a remote reference to the
service object.

III. THE PROPOSED MODEL

A. Creating Distributed Application by using RMI
We have developed a distributed application by doing the
general following steps:

1. Interface definition for remote service.
(PrimeNumber.java)
2. Implementation of remote service.
(PrimeNumberImpl.java)
3. Stub & Skeleton files.
4. A server to host the remote service. (PrimeServer.java)
5. A RMI Naming Service that allows clients to find the
remote services.
6. A client program that needs the remote services.
(PrimeClient.java)

Fig 3A: Steps of RMI system

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-6, Issue-6, November 2018

DOI: 10.21276/ijircst.2018.6.6.1

Copyright © 2018. Innovative Research Publications. All Rights Reserve 119

B. Steps to build RMI system
We have built the RMI system by doing the general
following steps:

1. At first, we have written a java code for the interfaces
(PrimeNumber.java) & compile it. We have
implemented same interface in the server & client,
where the stub class of client & the implementation
class (PrimeNumberImpl.java) of server use this
interface defines the behavior.

2. We have written a java code for the implementation
classes which runs in server. We have implemented the
behavior in the implementation, the behavior that we
defined in the interface.

3. Then we have run the RMI compilers, rmic, which runs
on the implementation class. It generates stub
(PrimeNumberImpl_Stub) as we used jdk 1.5 versions.

4. We have written a java code for the remote service host
program (PrimeServer.java) which contains only the
service.

5. We have written a java code for the client program &
compiled it .The client sends the request to do its task
& receives the result.

6. Lastly, we have installed & run the RMI system. For
this we started the registry: RMI registry on each server
which contains the information of the remote service of
each server. The client gets the service information

from the RMI registry & hooks up with its desired
server. Then we have run the servers & send the
request from the client host.

C. Running RMI system
To start this system we need to start three consoles one
for server, one for client & one for RMI Registry. As we
have used 8 hosts as servers, thus each host starts two
consoles one for server & one for RMI registry. And one
host would start one console for client. Start the registry
by entering the following: RMI registry the registry will
start running. The next consoles of each server start their
individual services by entering the following: java Prime
Server It will start loading the implementation into
memory & wait for a client connection. In the last
console of client starts the client program
java Prime Client

IV. INPUT AND OUTPUT

Our system takes a single integer numbers as input that
iterate from 1 to the input number to find the prime
numbers and output will be the time it took to
successfully find the prime numbers. We gave 50000,
100000, 150000, and 200000 as the input numbers. We
first tested it out on a single host, then on the eight hosts,
where we distributed the task evenly on the hosts and
received the outputs that are given on the table.

S.No Number Single Host (time) Eight Hosts (time)

1 50000 1.839 0.623

2 100000 5.094 1.7695

3 150000 11.86 3.712

4 200000 17.097 4.5863

Table 1: Time difference between Single Host and Eight Host to output the prime numbers

Effective Techniques to Improve Network Load Balancing for Parallel Computation Using RMI

Copyright © 2018. Innovative Research Publications. All Rights Reserve 120

 Fig 4A: Time difference between Single Host and Eight Host to output the prime number

V. CONCLUSION

By doing this research it is clear that how a task can be
distributed among the multiple hosts. Firstly the given
task is broken apart into discrete pieces of work then it
can be solved simultaneously. As we have used parallel
computing, it executed multiple program instructions and
solved almost three times faster with multiple compute
resources than with a single compute resource. Also we
have explained that an efficient RMI implementation is a
good basis for load balancing and writing high-
performance parallel applications.

VI. REFERENCES

[1] M. Ozaki, Y. Adachi, Y. Iwahori, and N. Ishii,
"Application of fuzzy theory to writer recognition
of Chinese characters", International Journal of
Modeling and Simulation , Vol. 18, No. 1, 1998,
pp. 11–16.

[2] W. J. Book, "Modeling design and control of
flexible manipulator arms: A tutorial review",
Proceedings of the 29th IEEE International
Conference on Decision and Control , San
Francisco, CA, USA, 1990, pp. 500–506.

[3] R. E. Moore, Interval analysis, Englewood Cliffs,
NJ: Prentice Hall, 1966.

[4] D. S. Chan, Theory and implementation of
multidimensional discrete systems for signal
processing, doctoral dissertation, Massachusetts
Institute of Technology, Cambridge, MA , USA ,
1978.

[5] Eggen, Dr. Roger and Maurice Eggen,
“Efficiency of Distributed Parallel Processing
using Java RMI, Sockets, and CORBA.” .

[6] Chandra Kopparapu, Load Balancing Servers,
Firewalls & Caches, Wiley, ISBN 0-471-41550-2

[7] J. Waldo,“ Remote procedure calls and Java
Remote Method Invocation,”IEEE Concurrency,

July–September 1998, pp. 5–7.
[8] R. Alonso, ‘‘The Design of Load Balancing

Strategies for Distributed Systems,’’ Future
Directions in Computer Architecture and
Software Workshop, pp. 1-6, Seabrook Island,
SC, May 5-7, 1986.

[9] K. Baumgartner and B. W. Wah, ‘‘GAMMON: A
Load Balancing Strategy for a Local Computer
System with a Multi-access Network,’’ Trans. on
Computers, vol. 38, no. 8, pp. 1098-1109, IEEE,
Aug. 1989.

[10] An article on Network Load Balancing Services
http://en.wikipedia.org/wiki/Network_Load_Bala
ncing_Services

[11] Zaki, M., Li, W., Parthasarathy, S. “Customized
Dynamic Load Balancing for a Network of
Workstations”. Proceedings of HPDC ’96, 1996.

[12] Springer Berlin / Heidelberg, Network and
Parallel Computing, ISBN 978-3-540-2981-6

[13] Design Patterns, by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides (The Gang of
Four)

[14] Sun's RMI FAQ
[15] http://java.sun.com/javase/technologies/core/basic/r

mi/index.jsp

