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ABSTRACT: Image compression is the process of 

reducing the size of an image file while retaining its 

quality. When we compress a digital photograph or 

graphic file, it maintains the same image resolution but 

shrinks the amount of processing data that a computer 

uses to view or display that image which ultimately 

reduces the memory used for the storage of image files. 

There are various algorithms used for image compression. 

Linear Algebra(SVD) plays an important role in image 

compression. In this paper, we will discuss what is 

Singular Value Decomposition (SVD), how to compute 

singular value decomposition( SVD) andthe size of stored 

images is reduced by removing small singular values.We 

will use MATLAB to get the final output. 

 

KEYWORDS: Image Compression, Singular Value 

Decomposition, MATLAB 

I. INTRODUCTION  

To store a large amount of data much storage space is 

required. We often share information through pictorial 

data but many times we are running out of storage space 

and the speed of our devices get reduced. Image 

compression aims to minimise the amount of data needed 

to represent an image. The algorithm for image 

compression's primary objective is to represent images 

using the fewest number of bits. 

In order to save an image using less memory while 

maintaining the image quality, we explore employing the 

technique of Singular Value Decomposition to compress 

the size of the saturation matrices while keeping the most 

crucial elements[3][6]. 
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II.     SINGULAR VALUE DECOMPOSITION: 

WHAT IS IT? 

To perform singular value decomposition (SVD), a 

matrix A must be transformed into the form A = UΣVT 

With the use of this computation, we are able to keep the 

crucial singular values that the image needs while letting 

go of the values that are not as crucial to maintaining the 

image's quality. 

The square roots of the eigenvalues of the n × n 

matrix ATA, which are normally arranged by magnitude in 

decreasing order, make up the singular values of am × n 

matrix A. 

III.    HOW TO COMPUTE THE SVD OF MATRIX 

We solve one example of SVD using the theory 

process.Let 𝐴 =  [
3 2 2
2 3 −2

] 

We begin by forming matrix 𝐴𝐴𝑇 

 𝐴𝐴𝑇 = [
17 8
8 17

] 

Next step is to calculate Eigenvalues of 𝐴𝐴𝑇 . For that 

compute determinant of (𝐴𝐴𝑇 −  𝜆𝐼).  Find characteristic 

equations i.e. det(𝐴𝐴𝑇 −  𝜆𝐼) = 0. 

After solving we will get the characteristic equation as 

𝜆2 − 34𝜆 + 225 = 0. 

The roots of this equation are 𝜆 = 25, 9.  
Therefore the singular values are 𝜎1 = 5 , 𝜎2 = 3. Now 

we have to form matrix V. 

We find ortho normal set of eigenvectors of 𝐴𝑇𝐴. The 

eigen values of 𝐴𝑇𝐴 are 25, 9 and 0.  

For 𝜆 = 25 we have, 𝐴𝑇𝐴 −  25𝐼 = [
−12 12 2
12 −12 −2
2 −2 −17

] 

We then solve the homogeneous equation(𝐴𝑇𝐴 −

 25𝐼)𝑋1 = 0. We get 𝑋1 = [
1
1
0
] 

We then normalize the eigenvector by dividing by its 

magnitude. We get  𝑣1 =

[
 
 
 
1

√2
⁄

1
√2

⁄

0 ]
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We do this for each eigenvalue and form a matrix 𝑉 =

 [𝑣1 𝑣2 𝑣3] =

[
 
 
 
 
1

√2
⁄ 1

√18
⁄ 2

3⁄

1
√2

⁄ −1
√18

⁄ −2
3⁄

0 4
√18

⁄ −1
3⁄ ]
 
 
 
 

 

We list non-zero singular values down the major diagonal 

in decreasing order to decide matrixΣ. 

Hence  Σ = [
5 0 0
0 3 0

]. 

So at this point we know that  𝐴 = 𝑈 Σ 𝑉𝑇 =

U  [
5 0 0
0 3 0

]

[
 
 
 
 
1

√2
⁄ 1

√2
⁄ 0

1
√18

⁄ −1
√18

⁄ 4
√18

⁄

2
3⁄ −2

3⁄ −1
3⁄ ]

 
 
 
 

 

We can compute U by the formula 𝑢𝑖 = 
1

𝜎
 𝐴𝑣𝑖 . This 

gives 𝑈 = [

1
√2

⁄ 1
√2

⁄

1
√2

⁄ −1
√2

⁄
]. 

The SVD is 𝐴 =  𝑈 Σ 𝑉𝑇 = [

1
√2

⁄ 1
√2

⁄

1
√2

⁄ − 1
√2

⁄
]. 

[
5 0 0
0 3 0

]

[
 
 
 
 
1

√2
⁄ 1

√2
⁄ 0

1
√18

⁄ −1
√18

⁄ 4
√18

⁄

2
3⁄ −2

3⁄ −1
3⁄ ]
 
 
 
 

 

 

 

III. APPLICATION TO IMAGE COMPRESSION 

When we look at the white colour on our screen, there is 

no white pigment on the screen. It is a combination of 

red, green, and blue colours that are depicted on the 

screen by minuscule pixels. When viewed from a 

distance, the saturation of each pixel in this grid-like 

pattern causes it to appear a distinct colour. These red, 

green, and blue pixels range in saturation on a scale of 0 

to 255; with 0 being completely off, and 255 being 

completely on.[2]A picture can represent data in a matrix 

because of the pixel’s grid-like nature. 

Consider a grayscale image. Red, green, and blue values 

must match in order to make an image grey. We can 

represent a pixel as having a value of 0 through 255 and 

then repeat that value across the red, green, and blue 

saturation to get the corresponding shade of grey.[2] 

Let's say we have a grayscale image with a size of 5184 x 

3456 pixels. A matrix that is also 5184 x 3456 and with 

values ranging from 0 to 255 can be used to represent 

each of those pixels; the matrix's dimensions are5184 x 

3456. Now, we should have to keep track of exactly 5184 

x 3456 digits if we want to store that image. If it was 

coloured, it would be triple that of a grayscale image, 

which equals 1.64 MB for a grayscale image or 4.92 MB 

for a coloured image. To save memory on the image we 

can compute singular value decomposition and then 

calculate some level of precision. 

A. Implementation in Grayscale image 

In MATLAB, we use and modify existing code from Dr 

Brady Matthews’ paper “Image Compression using 

Singular Value Decomposition” to load an image, isolate 

the corresponding saturation matrix, and then modify the 

matrix based on its singular values[2][3]. 

\

 

                               Figure 1: Coloured and Grayscale image[4] 
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Figure 2: .Images formed using MATLAB with singular values {{2,6,12,20}, {25,50,100,150} } 

From the figure 1 and 2, we get the following results in table 1. 

Table 1: Modes save quite a bit of memory 

Original Image 689 KB (7,06,400 bytes) 

with a singular value of 50 440 KB (4,51,239 bytes) 

with a singular value of 100 480 KB (4,92,335 bytes) 

with a singular value of 150 500 KB (5,12,000 bytes) 

 

This shows that these modes save quite a bit of memory. 

The inaccuracy in the picture compression process and 

how the image differs from the original image are 

displayed in the following graph. The error is calculated 

as the difference between our new image and our original  

 

image, and this difference is then plotted on a graph. We 

can infer from figs. 3 and 4 that when more singular 

values are used, the rate change of the error loss becomes 

less significant [3]. Figure 3(a) By taking singular values 

upto 200 and in Figure 3(b) By taking singular values up 

to 100. 

Figure 3(a) By taking singular values upto 200  (b) by taking singular values up to 100

B.  Implementation in Colour Image 

As Shown above we used image compression for the 

grayscale image. Now we will expand this process for a 

colour image. For this, we choose a colour image of the 

flower as shown in figure 4

 

Figure 4:  Full colour image colour saturation representation [5] 
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Each pixel in the full colour image has colour saturation 

representation values (see the above figure 5) of 0 to 255 

for red, green, and blue. Since the image becomes more 

complicated as a result, more storage space is needed to 

save it. We can determine the contribution each colour 

makes to each pixel by comparing how each one is 

represented to the full-colour image, as seen in figure 5.

 
    Figure 5: Full-colour image perform by SVD method 

Since each of these three colours contains a unique matrix 

of image information, we must first divide the full-colour 

image into its red, green, and blue layers before we can 

perform the SVD method. Each of the colour matrices 

will have its smallest singular values removed, and we'll 

use those values to modify the matrices before 

reconstructing the full-colour image. The quality of the 

image in Figure 7 improves as we compute the SVD and 

only reinsert particular singular values. There isn't much 

we can tell about the original image from a value with 

just one single. We can more easily identify the image as 

a flower as singular values are added back in [2].

 

 

 

Figure 5: Compressed Image 

  

 

 

If we compared the original and compressed images, we 

can see a noticeable difference in storage size. i.e our 
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main challenge of saving storage space is fulfilled. The 

original image took 1.64 MB of memory and the 

compressed image with   

100 singular values is taking 775 KB of memory which is 

almost 50% of the original image. Comparing them side 

by side, they appear to be nearly identical, but their 

storage capacities and information matrices are 

substantially less. Instead of naturally lowering the 

number of pixels in these comparisons, we have kept the 

original amount by removing unimportant singular 

values. 

 

IV.   CONCLUSION 

We apply singular value decomposition to both greyscale 

and colour image and from above result we can say that, 

our main aim to compressed data without reducing the 

quality of an image is achieved. For the colour image, 

when we apply singular value 100, we are able to save 

half of the memory. In the future, we can apply this 

process to every frame of videos will definitely save 

significant amount of storage. This process will also help 

in face recognization.  
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