

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-7, Issue-3, May-2019

DOI: 10.21276/ijircst.2019.7.3.7

Copyright © 2019. Innovative Research Publication. All Rights Reserve 71

A Better Solution Towards Microservices

Communication In Web Application: A Survey

 Gurudat K S, Prof. Padmashree T

Abstract— Most of the software applications are configured as

client-server fashion in the network in order to enable

communication among them. But sometimes these applications

must be able to communicate or exchange data between clients

and server that are not always up and active. One of the

solutions to such issues is to enable applications to store

information and communicate asynchronously with other. Thus

in this regard Message Oriented Middleware (MOM) which

support massage queue based communications are becoming

more and more popular today. It is the task of developer to

choose the suitable broker for his applications. Thus one has to

compare different MOM based brokers to select suitable and

efficient ones. This paper mainly compares two brokers-

RabbitMQ and RESTful API. By conducting survey on different

experimental results it can be concluded, that when large number

of users are involved in network communication, RabbitMQ is

more stable and suitable to use.

Keywords— RabbitMQ; RESTful API; Message Oriented

Middleware (MOM)

I. INTRODUCTION

Microservices is a variant of Service-Oriented Architecture

(SOA) that outlines applications as combination of loosely

connected devices. This architecture decomposes applications

into different working modules and helps developer to clearly

understand working of each module and, design and

implement every single module with ease. Thus it increases or

improves modularity. There are different architectural styles

like Representational State Transfer (REST) and Advanced

Message Queuing Protocol (AMQP). Representational State

Transfer is mainly collection of architectural principles and

constraints. RESTful API is an Application Programming

Interface that makes task of requesting the resources very

intuitive and convenient thus in turn minimizing the

complexity of the service provision[1][2]. Most of the

scenarios microservices use RESTful API for exchanging

messages between clients [6].

Manuscript received May 16, 2019

 Gurudat K S, M.Tech Software Engineering, RV

College of Engineering®, Bengaluru-59, India,

Email:gurudathsbhat@gmail.com

 Prof. Padmashree T, Assistant Professor, RV College

of Engineering®, Bengaluru-59, India.

But if large numbers of users are involved, sending and

requesting messages, then alternative solution like AMQP

can be used as RESTful APIs are not so stable in this case.

Thus this paper mainly analyses the usage of AMQP as

alternative, and discusses different cases of using it. The

AMQP is comparatively stable in case of message transfer

services. Advanced Message Queuing Protocol (AMQP) is

an application level standard that provides integrated

messaging services. When large number of users are

requesting and sending requests at the same point of time,

even if they cannot be processes within the specified time

period they can be stored in message queue and can be

processed later. The requests are fetched from this queue

during the processing time. This paper conducts survey on

two main microservices namely-AMQP based RabbitMQ

and RESTful API. Performance is analyzed based on

number of users and modes of communication. The rest of

the article is organized as follows: Section II presents

related works in support of survey. Section III describes

microservice architectures. Section IV gives insight on

analysis of the results from various research papers. The

article is concluded in Section V.

II. RELATED WORK

A. Representational State Transfer (RESTful)

Application Programming Interface

Representational State Transfer ful (RESTful) Application

Programming Interface is one of the architectural system of

distributed hyperdermia systems[3]. It is first proposed in

2000 by Roy Rleding. In this architecture the key data

abstraction rests in resources. Any kind of information

stored can be named as resource. Like images, documents,

services, any non virtual objects those are included in tasks

etc. This API uses resource identifiers that are used to

represent resources, for interaction between components.

The state of these resources at any point of interaction time

is known as resource representation. The representation

consists of several components-like data, description of

data i.e. metadata, links that allows users to switch between

two different states of resources. The main usage of this

API is it provides required flexibilities[6]. The information

exchanged does not have dependency on any resources or

methods. Thus calling and receiving of different data

formats can be easily handled. Because of these advantages

RESTful API is used in HTTP environments. It uses GET,

DELETE, POST, PUT and other methods to make changes

A Better Solution Towards Microservices Communication In Web Application: A Survey

Copyright © 2019. Innovative Research Publication. All Rights Reserve 72

in any resources. Manipulation of these resources makes

actions like calling resources more convenient and flexible.

Together with these codes for handling the resources is also

made precise and concise. Although this method is flexible

and concise, and highly suitable for microservices, it is not

applicable for each and every scenario. It is based on HTTP

environment, and HTTP will crash if it receives lots of

requests, exceeding its capacity. Thus there is need for

alternatives like Message Oriented Middleware that can

handle large number of resource requests.

B. Advanced Message Queuing Protocol (AMQP)

Advanced Message Queuing Protocol is the standard used in

application level for enabling communication between

applications or business organizations.[4] It regulates and

standardizes the behavior of different service providers for

messaging ranging from small services to implementation

level, enhancing interoperability of the applications. AMQP is

different service, which is different from other services as it

allows exclusively specifying the messages that can be

received and also allows to trade off reliability, security and

performances[5]. The organization or a system that integrates

AMQP services have better performances compared to other

services. Among other competing paradigms there are several

reasons for choosing AMQP services. It is more flexible,

allows to connect or integrate the applications on different

platforms and it is more convenient to implement and use.

Figure 1 shows different functional module of AMQP

architecture. It shows functional chain from processing to

completion of intended tasks. The message received from

application is first received by application module and sent to

message queue based on certain specified restrictions. The

message queue holds the messages until it is completely

processed by the user. Binding module defines interrelation

between exchange and message queue modules by providing

routing rules.

Fig.1: AMQP Architecture

The Figure 1 shows architectural diagram for AMQP
service. This paper gives survey on performance analysis
by reviewing researches conducted in different papers.
RabbitMQ is tested on web applications to allow
communication between different applications [1][2]. The
performance results are analyzed.

III. MICROSERVICE WEB APPLICATIONS

A. Representational State Transfer API Method

The previous section contains introduction to RESTful

API. As already mentioned RESTful API is resource

independent. It is also flexible and convenient to use.

Figure 2 shows the integration of RESTful API method in

the development of web application using microservice

architecture. All the interfaces in the application contains

RESTful APIs that specifies the actions in advance and

implemented on the basis of received URLs and

METHODs. Since these actions are defined in advance

there is no need of understanding internal structures. All

services communicate with each other to process the

requests [1].

But RESTful APIs has following disadvantages.

 This API is light-weight, but it cannot handle the

complex communication environments.

 It is based on HTTP methods which are not suitable

for processing large amount of data.

 Different clients or services are required to test the

API services. Thus lot of time is spent to understand

their functionalities.

 They also fail to maintain state within the sessions.

Fig.2: Application using REST API

Figure 2 shows the application using REST API. Here the

various types of applications like android, IOS and web

app sends REST requests through android device, IOS

operating device and browser respectively. The requests

are sent to specified service providers using REST API [6].

Later the requests are processed and application server

takes specified actions.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-7, Issue-3, May-2019

DOI: 10.21276/ijircst.2019.7.3.7

Copyright © 2019. Innovative Research Publication. All Rights Reserve 73

B. RabbitMQ Method

As the paper proposes comparison between two

communication methods used in microservices, the same

application is also developed by researchers using RabbitMQ

method. This is shown in Figure 3.

 Fig.3: Microservice application using RabbitMQ

Figure 3 shows deployment of RabbitMQ in communication

module. The user sends service requests. Here before sending

the requests to specified users, the requests are queued to

message queues. The message exchange is the core part of

RabbitMQ. There are mainly four categories of exchange

types- Direct Exchange, Topic Exchange, Fanout Exchange

and Headers Exchange. Each exchange type has different

overheads on CPU. Thus the developer has to select the

suitable one for his applications. The microservice developed

using RabbitMQ as shown in the figure requires the messages

to be directly sent to the specific application and received by

the specific application. Thus Direct Exchange type is used by

the researchers [1]. Here after the receiving the request by the

exchange module, it is sent to message queue. The exchange

module constantly keeps listening the message queue and

executes the event as mentioned in the message.

IV. EXPERIMENT AND RESULTS

In the experiment conducted by the researchers, performance

of the two microservice based web applications are compared.

They have deployed them in various network configurations.

The experiments are repeated and average of the result is

calculated in order to ensure the accuracy of the experiment

conducted. The experiment is conducted on standard

configuration using i7 Intel core processor, 16GB memory,

1GB bandwidth, RabbitMQ 3.7.3, Apache 2.4.29. RabbitMQ

is more stable when large number of users is involved.

Researchers conducted experiment by varying number of

users, from 50, 100, 150, 200, 250 300 to 350. These users

send request for information in 15 minute time period. The

results are shown below. The graph shows the variation of

speed at which users receive responses for the request sent.

 Fig.4: Microservice response speed comparison

Figure 4 shows speed comparison between two

microservices using RESTful API and RabbitMQ. The

graph shows that if number of users is 50, difference

response speed of two microservices is almost negligible.

In the initial stages as number of users increases response

speed of REST API increases. But as number of users

increase from 250 to 300 the response speed of RabbitMQ

increases significantly. For 300 users the REST API has

highly poor performance in comparison to RabbitMQ.

V. CONCLUSION

The communication methods used by microservice

application can contain either RESTful HTTP calls or it

can AMQP clients such as RabbitMQ. By analyzing the

results it can be concluded that RESTful service can be

used as a communication channel between microservices

only when there are light traffic in channels. As the traffic

in the channel increases RabbbitMQ as a message broker

service can be used. Even in small amount of traffic in

communication channel RabbitMQ can be proffered as

RESTful API uses state transfer method there lies a

possibility that when switching from one state to another,

some of the packets can be lost. But in message broker

services all the messages are stored in different types of

queues. Even when the connection between the packets

and the channel is lost the data in the queue is retained.

When the connection is online the packets can resume their

communication. Thus it can be concluded that RabblitMQ

a message oriented middleware provides better

communication in microservice applications.

A Better Solution Towards Microservices Communication In Web Application: A Survey

Copyright © 2019. Innovative Research Publication. All Rights Reserve 74

ACKNOWLEDGMENT

This survey paper is presented as part of major project for

M.Tech, Software Engineering Post Graduate Program in

the RV College of Engineering®, Bengaluru-560059.

 REFERENCES

[1] Xian Jun Hong, Hyun Sik Yang, Young Han Kim

"Performance Analysis of RESTful API and RabbitMQ

for Microservice Web Application" IEEE conference,
2018

[2] W. Hasselbring, and G. Steinacker, “Microservice

architectures for scalability, agility and reliability in e-

commerce,” IEEE International Conference on, vol. 1, pp.

243-246, April 2017.

[3] V. Mario, G. Oscar, C. Harold, V. Mauricio, S. Lorena, C.

Rubby, and G. Santiago. “Evaluating the monolithic and

the microservice architecture pattern to deploy web

applications in the cloud,” In Computing Colombian

Conference, 2015 10th, pp. 583-590, November 2015.

[4] V.M. Ionescu, “The analysis of the performance of

RabbitMQ and ActiveMQ,” In RoEduNet International

Conference-Networking in Education and Research,

2015 14th, pp. 132-137, October 2015.

[5] J.L. Fernandes, I.C. Lopes, J.J. Rodrigues, and S. Ullah.
“Performance evaluation of RESTful web services and

AMQP protocol,” In Ubiquitous and Future Networks,

2013 Fifth International Conference on, pp. 810-815,

July 2013.

[6] L. Li, and W. Chou, “Design and describe REST API

without violating REST: A Petri net based approach,”

IEEE International Conference on Web Services, pp.

508-515, July 2011.

