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ABSTRACT- Graph isomorphism has been discussed in 

the literature as NP-hard problem. It has applications in 

various areas. Work done earlier in this area employs 

backtracking for identifying isomorphism between given 

two graphs as a result with the increase in size of the graph 

the time to solve the problem becomes exponential. The 

proposed work presents a polynomial time algorithm 

(PTGI) which tries to solve graph isomorphism between 

given two directed graphs. Some distinguishing features 

associated with each vertex are stored. These features are 
exploited in dividing the vertices of the graph into 

equivalence classes from which canonical representation of 

the graph is generated. Comparing these features of the 

vertices of the given two graphs solves isomorphism in 

polynomial time.  

 

KEYWORDS- Graph isomorphism, canonical 

representation, equivalence class, polynomial 

I. INTRODUCTION 

Graph isomorphism is one of the hardest problems that 

need attention. It is defined as a bijection between the      

vertices(nodes) of given graphs G1 and H1. A graph G1 can 

be represented by G1 = (V1, E1). Depending on whether 

the edge has a direction or not; graphs can be classified as 

directed or undirected. Numerous algorithms were 

presented earlier for solving graph isomorphism. In the year 

1976, Ullmann [10] proposed an algorithm that uses 

backtracking and reduces the size of the search space. In the 

same year, Schmidt and Druffel [9] proposed another 
backtracking algorithm that establishes initial partitions in 

the graph by referring to the information stored in the 

distance matrix of the graph. Around the same period, 

Weisfeiler and Lehman [11] worked on canonical 

representation of a graph in order to find stable partitions of 

vertices in the graph. Nauty algorithm was proposed by 

McKay [5] [6] in the year 1981 that constructs canonical 

representation for the graph. It is considered to be the 

fastest. 
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algorithm for finding isomorphism in graphs but Miyazaki 

[7] in the year 1997 showed that there are certain categories 

of graphs for which this algorithm takes exponential time. 

In the year 2001, Cordella, Foggia, Sansone and Vento [1] 

proposed VF2 which is a depth first search algorithm. VF2 

uses a set of rules to efficiently prune the search space. 

Another graph isomorphism algorithm ‘conauto’ was 

discussed in the year 2004 by Presa and Farnandez [8] that 

exploits both canonical representation and backtracking to 

solve isomorphism.   As the size of the graph increases, 
computational time also increases exponentially and 

restricts the algorithm applicability to smaller graphs. In the 

year 1974, Hopcraft and Wang [3] developed polynomial 

time algorithm for solving graph isomorphism that works 

only for planar graphs. Luks [4] in the year 1982 worked 

with bounded valance graphs for resolving isomorphism in 

polynomial time. Though the above mentioned algorithms 

can be completed in polynomial time but they impose 

restrictions on the graphs. In the year 2018, a parallel 

frequent subgraph mining algorithm was proposed wherein 

the frequent subgraphs were mined in a single large graph 
using Apache Spark framework [20]. In the same year, 

Kaleido [19] was proposed that is an out of core graph 

mining system on a single machine. Another algorithm was 

proposed in the year 2018, which used Facenet graph 

mining algorithm [16] to generate useful knowledge from 

the communication transaction data. ASAP algorithm [17] 

was also proposed in the same year which produces state of 

art results in graph approximation theory. The ASAP 

algorithm was also extended to the general graph patterns in 

distributed settings. In the year 2019, fractal [18] was 

proposed for supporting distributed graph pattern mining. 

Fractal is a high performance and high productivity system 
which employs a dynamic load balancing system based on 

locality aware stealing and hierarchical mechanism. The 

proposed approach aims at developing an algorithm for 

finding graph isomorphism in polynomial time. This is 

based on finding canonical representation for the given 

graphs and grouping the vertices into a set of equivalence 

classes so that the problem of isomorphism can be reduced 

to solving isomorphism between the vertices in the same 

equivalence class. For each vertex, the important 

characteristic features like direct / indirect path(s), shortest 

path length and count of the vertices traversed in all 
available shortest paths are stored in the form of adjacency 

list. Vertices belonging to same equivalence class can be 

differentiated from each other on the basis of their 

interaction with the vertices belonging to other equivalence 

classes. Dividing vertices of a given graph into equivalence 
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classes solves isomorphism problem in polynomial time. 

Count of vertices in all the equivalence classes in the two 

graphs is same; if the given two graphs under test exhibit 

isomorphism.  

    The present paper is divided into different sections 

focusing on providing overview of the earlier work, giving 
details on the proposed work, explaining the proposed work 

with the help of an example and arriving at the 

computational complexity of the proposed work. Section 2 

gives overview of the work done in the previous years in 

this area, section 3 discusses the proposed approach- PTGI, 

section 4 presents detailed discussion on the proposed 

algorithm-PTGI, section 5 gives computational complexity 

of PTGI and last section gives concluding remarks. 

II. OVERVIEW OF THE EXISTING WORK 

This section focuses on providing overview of the major 

algorithms developed in the field of graph isomorphism. 

Graph mining problem has gained importance gradually 

and lot of new closeness measures were proposed for image 

and pattern recognition. [12] The graph isomorphism 

problem along-with the generalizations is essential in large 

application areas which are directly dealing with similarity 

problems such as pattern and image recognition [13]. 

 Algorithms discussed in the literature use either canonical 

representation or backtracking or both. Nauty algorithm [5] 

[6] identifies automorph groups in a set of vertex colored 

graphs. This algorithm is based on group theory and 

provides information about the set of generators, size of the 

group and the orbits of the group. It also generates 
canonically labeled isomorph to assist in testing 

isomorphism. It uses backtracking which can be described 

in terms of search tree. Except in simple cases, only parts of 

the tree are generated; other parts are shown either 

equivalent to the already existing parts or are shown as 

uninteresting.  

Figure 1 gives sample graph for generating automorphs 

using Nauty agorithm and Figure 2 shows part of the search 

tree generated using this algorithm. In Figure 2, DEF and 

ABC are equitable partitions. Partition DEF is considered 

for further partitioning and is represented as the target cell 

(underlined in Fig. 2). The labels on tree edges represents 
the target set element being fixed, for example, the  first 

edge shows that element D is fixed and second edge shows 

that element E is fixed. Further partitioning is done in the 

same way. All leaves in the search tree generated are 

equivalent. Figure 2 show automorphs (AC) (DF) and (BC) 

(EF).

 

 
 

 

 

 

 

       

 

 

 

 

 

 
 

                   Fig 1: Sample graph for generating automorphs using Nauty                           Fig 2: Part of search tree generated using Nauty 

 

 VF2 [1], a depth first algorithm is a deterministic matching 

method that can be used for identifying both graph and 

subgraph isomorphism. The algorithm does not impose any 

constraints on the graph topology and hence can exploit the 
semantic information associated with nodes and edges. As 

this algorithm takes less memory, it can be used with large 

graphs. The algorithm prunes the search space by using 

certain set of rules. The memory requirement of this 

algorithm is linear in number of nodes and the number of 

edges. 

    Conuto algorithm [8] tries to resolve isomorphism by 

identifying automorphs and generating series of partitions. It 

works on the following steps: sequence of vertex partitions is 

built; autotrophism is identified without backtracking 

technique; Even if automorphism is not resolved till this 

stage, sequence of partitions are generated in the second 
graph (that matches first graph) using backtracking. Conauto 

used adjacency matrix representationand checks the count of 

vertices and edges in the given graphs. Graphs with same 

count for vertices and edges qualify for partitioning.  

    Conauto algorithm behaves uniformly for all classes of 
graphs on the other hand Nauty and VF2 algorithms have 

specific classes of graphs for which they take large amount of 

time even if graphs are smaller in size. Worst case time 

complexity for the all these algorithms is exponential as 

backtracking is used. In 2016, Mortuza proposed polynomial 

time algorithm for graph isomorphism [15] for a specific 

category of the graphs that are not locally triangle-free.  

Another algorithm, GI-Ext is capable of dealing graphs with 

large number of edges (approx. thousand) but is more suited 

for partial isomorphism as compared to subgraph 

isomorphism problem. [14]. 
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III. PROPOSED APPROACH.-PTGI 

In PTGI, adjacency matrix definition is modified as discussed 

below. For graph G1, adjacency list can be represented by 

A_L (G1) for the given n vertices. Each node in the 

adjacency list represents the shortest distance between the 

given two vertices x and y. The characteristics features of the 

vertices x and y helps in identifying isomorphism. The format 

used for storing information in adjacency list is discussed as 
follows. For storing information about the shortest path from 

x to y the adjacency list for vertex x will have the value 

[y]|[shxy]|[shdxy]|[Cyx]|[Cxy] and for vertex y it will be 

[x]|[shyx]|[shdyx]|[Cxy]|[Cyx] where 

[shxy] = dp if there is a direct path between x and y; 

          = ip if there is an indirect path between x and y; 

[shdxy]= shortest path between x and y; 

 [Cyx] = count of the vertices in the shortest path between y 

and x (including x and y); 

[Cxy] = count of the vertices in the shortest path between x 

and y (including x and y).  

    Breadth first search is used to identify shortest paths 

between all vertex pairs and details are noted using the 

format defined above. Canonical representation for the graph 

is generated once the graph is recorded as adjacency list. For 

finding canonical representation, all distinct values in the 

adjacency list are identified and their occurrence is recorded 

for each vertex along-with the in-degree and out-degree for 

the vetex. This gives the summary regarding the 

characteristics of the vetex which is represented by CSV 
(Characteristic Summary of the Vertex). For different 

vertices CSV is recorded and is arranged in increasing or 

decreasing order and is assigned a class number. The vertices 

sharing same CSV are assigned to the same equivalence 

class. 

    Graphs under consideration are compared once their 

canonical representation is generated. For finding 

isomorphism, the given two graphs must have the same 
number of equivalence classes and each class must have 

same number of vertices belonging to it. Vertices in the same 

equivalence class from the two graphs are compared for their 

distinguishing features. If vertices of all the equivalence class 

shows mapping between their vertices (in the given graphs), 

isomorphism is detected else the two graphs are not 

isomorphic. 

A. Algorithm: 

1. Traverse all possible shortest paths between vertex x and y 

in the given graph G1 using Breadth First Search algorithm. 

If there is only one shortest path between vertex x and y then 

find the cardinality of the vertices encountered in the 

identified shortest path else find the cardinality of the union 

of the vertices encountered in all the identified shortest paths. 

2. Create Adjacency list representation,         for graph 

G1 (as explained above). 

3. Compute canonical representation for the given graph G1 

(as explained above). 

4. Perform step 1 to step 3 for given graph H1. 

5. Compare the vertex belonging to the same equivalence 

class from the adjacency lists of graph G1 and H1. If all the 

equivalence classes in the two graphs have same number of 

vertices, then the vertices of the respective equivalence 

classes from the two graphs are matched for their 

distinguishing features. If all the vertexes of all the 

equivalence classes show same features, isomorphism is 

detected. 

 

IV. ILLUSTRATIONS OF THE PROPOSED 

ALGORITHM – PTGI 

PTGI is explained as follows using an example. Figure 3 and 

Figure 4 gives two graphs G1and H1 respectively. Graph G1 
and graph H1 has a set of twenty vertices. Figure 5 shows the 

adjacency list of graph G1

. 

 

 

 
 

 

        

  

 

 

 

 

 

Fig.  3: Graph G1 for testing isomorphism 
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Fig.  4: Graph H1 for testing isomorphism 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.  5: Adjacency list representation for storing shortest paths from different nodes in graph G1 
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3|dp|1|0|2 

 

13|dp|1|2|0 

 

14|dp|1|2|0 

 3|dp|1|0|2 

 

12|dp|1|2|0 

 

15|dp|1|2|0 

 

0|dp|1|0|2 

 

2|ip|2|0|3 

 

4|dp|1|2|0 

 

7|dp|1|2|0 

 0|dp|1|0|2 

 

2|ip|2|0|3 

 

5|dp|1|2|0 

 

6|dp|1|2|0 

 

2|dp|1|0|2 

 

12|dp|1|2|0 

 

13|ip|2|3|0 

 

14|dp|1|2|0 

2|dp|1|0|2 

 

12|ip|2|3|0 

 

13|dp|1|2|0 

 

15|dp|1|2|0 

 

1|dp|1|0|2 

 

3|ip|2|0|3 

 

4|dp|1|2|0 

 

5|ip|2|3|0 

 

6|dp|1|2|0 

 1|dp|1|0|2 

 

3|ip|2|0|3 4|ip|2|3|0 

 

5|dp|1|2|0 

 

7|dp|1|2|0 

 

2|ip|2|0|3 

 

3|ip|2|0|3 

 

13|dp|1|2|0 

 

16|dp|1|0|2 

 

18|dp|1|0|2 

 2|ip|2|0|3 

 

3|ip|2|0|3 

 

12|dp|1|0|2 

 

17|dp|1|0|2 

 

19|dp|1|0|2 

 

2|ip|2|0|3 

 

3|ip|2|0|3 

 

15|dp|1|0|2 

 

16|dp|1|0|2 

 

17|ip|2|0|3 

 

19|dp|1|0|2 

 
2|ip|2|0|3 

 

3|ip|2|0|3 

 

14|dp|1|0|2 

 

16|ip|2|0|3 

 

17|dp|1|0|2 

 

18|dp|1|0|2 

 

2|dp|1|0|2 4|ip|2|3|0 5|ip|2|3|0 

 

6|ip|2|3|0 

 

7|ip|2|3|0 

 

8|dp|1|2|0 9|dp|1|2|0 

3|dp|1|0|2 

 

4|ip|2|3|0 

 

5|ip|2|3|0 

 

6|ip|2|3|0 

 

7|ip|2|3|0 

 

10|dp|1|2|0 

 

11|dp|1|2|0 

 

0|ip|2|0|3 

 

1|ip|2|0|3 

 

2|ip|3|0|4 

 

3|ip|3|0|4 

 

5|dp|1|0|2 

 

9|dp|1|0|2 

 

10|dp|1|0|2 

 0|ip|2|0|3 

 

1|ip|2|0|3 

 

2|ip|3|0|4 

 

3|ip|3|0|4 

 

4|dp|1|2|0 

 

8|dp|1|0|2 

 

11|dp|1|0|2 

 

0|ip|2|0|3 1|ip|2|0|3 2|ip|3|0|4 3|ip|3|0|4 7|dp|1|0|2 8|dp|1|0|2 
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16|dp|1|2|0 

17|dp|1|2|0 

14|ip|2|3|0 

1|dp|1|2|0 4|ip|3|4|0 5|ip|3|4|0 6|ip|3|4|0 7|ip|3|4|0 10|ip|2|3|0 11|ip|2|3|0 12|ip|2|3|0 

15|ip|2|3|0 

13|ip|2|3|0 

19|dp|1|2|0 

14|ip|2|3|0 

18|dp|1|2|0 
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Canonical representation also known as Characteristics 

Summary of the Vertex (CSV) of graph G1 generated using 

the adjacency list is given in Table 1. CSV for all the vertices 

is read vertically and is arranged in increasing or decreasing 

order. Vertices with same CSV falls under the same 

equivalence class. In the sample example discussed here, for 

graph G1, the CSV’s of the vertices are arranged in 
increasing order in order to give equivalence class labels.  

For example, CSV of vertices 18 and 19 is read as 00002121 

(read the column of vertex 18 and 19 from top to bottom) and 

the CSV of the vertices 8 and 9 are read as 00012121. Since 

00002121 is the smallest number in the CSV thus vertex 18 

and 19 are given equivalence class label 1. CSV and 

equivalence class number of the different vertices of graph 

G1 are given in Table 1(a). Equivalence class labels in table 1 

are given in the last row. In the similar fashion adjacency list 

and CSV of graph H1 is generated. CSV and equivalence 
class number of the different vertices of graph H1 are given 

in Table 2(a). 

 

Table1: Characteristic Summary of vertices of graph G1 

 

Vertex Label 

Vertex 

Characteristic 

 Summary 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

ip|3|4|0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ip|3|0|4 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 

ip|2|3|0 4 4 6 6 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 

ip|2|0|3 0 0 0 0 3 3 2 2 1 1 1 1 3 3 2 2 0 0 0 0 

dp|1|2|0 2 2 3 3 0 0 1 1 2 2 2 2 0 0 1 1 2 2 2 2 

dp|1|0|2 1 1 0 0 3 3 2 2 1 1 1 1 3 3 2 2 1 1 1 1 

InD_V 2 2 3 3 0 0 1 1 2 2 2 2 0 0 1 1 2 2 2 2 

OutD_V 1 1 0 0 3 3 2 2 1 1 1 1 3 3 2 2 1 1 1 1 

Equivalence Class 

Label 
7 7 10 10 9 9 8 8 2 2 6 6 4 4 3 3 5 5 1 1 

 

 

Table 1(a): CSV of different vertices of Graph G1arranged in increasing order 

Vertex of graph G1 CSV  Equivalence Class 

Label 

18 and 19 00002121 1 

8 and 9 00012121 2 

14 and 15 00021212 3 

12 and 13 00030303 4 

16 and 17 00102121 5 

10 and 11 00112121 6 

0 and 1 00402121 7 

6 and 7 02021212 8 

4 and 5 02030303 9 

2 and 3 40603030 10 
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Table 2: Characteristic Summary of vertices of graph H1 

                

              Vertex Label 
 

Vertex  

Characteristic  

Summary 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

ip|3|4|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 

ip|3|0|4 0 0 0 0 0 2 0 2 0 0 0 0 0 0 2 0 0 2 0 0 

ip|2|3|0 0 1 0 4 0 0 0 0 0 1 4 0 0 0 0 1 1 0 6 6 

ip|2|0|3 1 1 2 0 3 2 0 3 0 1 0 2 3 1 3 0 0 2 0 0 

dp|1|2|0 2 2 1 2 0 1 2 0 2 2 2 1 0 2 0 2 2 1 3 3 

dp|1|0|2 1 1 2 1 3 2 1 3 1 1 1 2 3 1 3 1 1 2 0 0 

InD_V 2 2 1 2 0 1 2 0 2 2 2 1 0 2 0 2 2 1 3 3 

OutD_V 1 1 2 1 3 2 1 3 1 1 1 2 3 1 3 1 1 2 0 0 

Equivalence Class 

Label 
2 6 3 7 4 8 1 9 1 6 7 3 4 2 9 5 5 8 10 10 

 

 

Table 2(a): CSV of different vertices of Graph H1arranged  in increasing order 

Vertex of graph G1 CSV  Equivalence Class Label 

6 and 8 00002121 1 

0 and 13 00012121 2 

2 and 11 00021212 3 

4 and 12 00030303 4 

15and 16 00102121 5 

1 and 9 00112121 6 

3 and 10 00402121 7 

5 and 17 02021212 8 

7 and 14 02030303 9 

18 and 19 40603030 10 

 

 

Table 3: Isomorphism between the vertices of graph G1 and graph H1 

Equivalenc

e Class 

Label 

graph G1 graph H1 
Equivalence 

Class Label 
graph G1 graph H1 

1 {18, 19} {6, 8} 6 {10, 11} {1, 9} 

2 {8, 9} {0, 13} 7 {0, 1} {3, 10} 

3 {14, 15} {2, 11} 8 {6, 7} {5, 17} 

4 {12, 13} {4, 12} 9 {4, 5} {7, 14} 

5 {16, 17} {15, 16} 10 {2, 3} {18, 19} 

 

   By matching the equivalence class labels in Table 1 and 

Table 2, it can be concluded that isomorphism exists between 

the following vertex set of graph G1 and H1 (refer Table 3).  

In order to resolve isomorphism between the vertices 

belonging to the same equivalence class of the given two 

graphs, distinguishing features noted for vertices of the two 

graphs are compared. For example, equivalence class 1 of 

graph G1 has vertices 18 and 19. From Figure 5, it is 

observed that vertex 18 has shortest paths with vertices 3, 13, 

14 and vertex 19 has shortest paths with vertices 3, 12, 15. 

Further, it is observed from Table 3 that vertex 3 belongs to 

equivalence class 10, vertices 12 and 13 belong to 

equivalence class 4 and vertices 14 and 15 belong to 

equivalence class 3. Similarly, vertices 6 and 8 of 

equivalence class 1 in graph H (refer Table 3), interact with 

vertices of equivalence classes 3, 4 and 10. Hence, all the 

vertices of equivalence classes 3, 4 and 10 are considered in 
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resolving isomorphism between the vertices of equivalence 

class 1. 

 

Table 4: Vertices of equivalence class 1 of graph G1 

 

Vertex of     
EC+ 3, 4,   

10 

 

Vertex  

of EC + 1 

EC+   3 EC+     4 EC+     10 

14 15 12 13 2 3 

18 d|1|2|

0 

i|0|0|0 i|0|0|0 d|1|2|

0 

i|0|0|0 d|1|0|

2 

19 i|0|0|0 d|1|2|

0 

d|1|2|

0 

i|0|0|0 i|0|0|0 d|1|0|

2 

 

 

Table 5: Vertices of equivalence class 1 of graph H1 

 

Vertex of     

EC+ 3, 4,  
  10 

 

Vertex  

of EC + 1 

EC+    3 EC+     4 EC+     10 

2 11 4 12 18 19 

6 i|0|0|

0 

d|1|2

|0 

d|1|2

|0 

 i|0|0|0 i|0|0|0 d|1|0|

2 

8 d|1|2

|0 

i|0|0|

0 

i|0|0|

0 

d|1|2|0 i|0|0|0 d|1|0|

2 

 

 

Rows of Tables 4 and 5 show vertices of equivalence class 1 

of graph G1 and H1 respectively for which isomorphism is to 

be resolved, the columns of the given Tables show the 

vertices of equivalence classes 3, 4 and 10 with which 

vertices of equivalence class 1 has shortest path and elements 
of the given Tables show the distinguishing features on the 

basis of the interaction of the vertices of equivalence class 1 

with the vertices of equivalence classes 3, 4 and 10. 

    From Tables 4 and 5, it is observed that isomorphism can 

be resolved between the vertices of equivalence class 1 of 

graph G1 and H1. It is seen from Tables 4 and 5 that the 

distinguishing features match between the vertex pairs (18, 

14) and (6, 11) of Graph G1 and H1 and likewise all the 

matching pairs are found which is shown in Table 6. 

 

 
 

 

 

 

 

 

Table 6: Vertex pairs of graph G1 and graph H1 matched for 

respective vertex pair values 

graph G1 graph H1 

(18, 14) (6, 11) 

(19, 14) (8, 11) 

(18, 13) (6, 4) 

(19, 13) (8, 4) 

(18, 15) (6, 2) 

(19, 15) (8, 2) 

(18, 2) (6, 18) 

(19, 2) (8, 18) 

(18, 12) (6, 12)  

(19, 12) (8, 12) 

(18, 3) (6, 19) 

(19, 3) (8, 19) 

 

   Hence, it can be inferred that in equivalence class 1, 

following vertices of graph G1 and H1 are isomorphic (refer 
Table 7). 

 

Table 7: Vertices belonging to equivalence class 1 of graph 

G1 and H1 showing isomorphism 

graph G1 graph 

H1 

18 6 

19 8 

 

    For all other equivalence classes same procedure is 

repeated to resolve isomorphism between the vertices of the 

given graphs. Table 8 show vertices of the two graphs G1 and 

H1 that shows isomorphism.  

 

Table 8: Vertices of graph G1 and H1 showing isomorphism 

graph 

G1 

graph H1 graph 

G1 

graph 

H1 

18 6 15 2 

19 8 12 12 

8 0 13 4 

9 13 16 16 

14 11 17 15 

10 1 7 17 

11 9 4 14 

0 3 5 7 

1 10 2 18 

6 5 3 19 

 

  Hence, it is seen that isomorphism problem can be resolved 

between the given two graphs by comparing vertices 

belonging to the same equivalence class which can be 

computed in polynomial time.  
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V. COMPUTATIONAL COMPLEXITY OF PTGI 

Computational complexity of the proposed algorithm PTGI is 

discussed in this section. Following definition, lemma and 

theorem will prove that the proposed algorithm terminates in 
polynomial time. 

Definition 1Given vertices n1 and edges m1 of the graph G1, 

let shd be the total number of shortest paths such that n1 X 

m1 < shd < n1 X n1 then the complexity in terms of space of 

the given graph G1 is less than n1 X n1. 

Lemma 1 Given vertices n1 and edges m1 in graph G1, 

breadth first search algorithm can be used for finding all 

possible shortest paths between vertex x and y in graph G1 in 

O(n1 + m1) time [2]. 

Theorem 1 Given vertices n1 and edges m1 in graph G1, the 

adjacency list representation for storing shortest path details 

between all vertex pair for the given graph G1 can be 

computed in O (n13 + m1n12) time. 

Proof: Let the total number of shortest paths identified 
between given vertex x and all other vertices be shdx, then for 

n1 such vertices,    
  
   = n12. As it takes atmost (n1+m1) 

iterations (refer Lemma 1) to find shortest distance and to 

group all vertices encountered if there are more than one 

shortest path between the given pair of vertex (x, y). 

Therefore, order of complexity is given by O (n13 + m1n12). 

Theorem 2 Equivalence class labels can be computed in 
polynomial time 

Proof:  Let n be the number of vertices. In order to find the 

equivalence class of the vertex, its CSV needs to be 

compared with the CSV of all the vertices. Thus, in order to 

compare the CSV of a vertex with all the other vertices it 

takes n iterations. Therefore, the total number of iterations 

needed to compare the CSV of all the vertices with every 

other vertex is n*n. Hence, the complexity of finding 
equivalence class labels is O (n2). 

Theorem 3 Graph isomorphism problem can be solved in 

polynomial time 

Proof: Let i be the number of equivalence classes; j be the 
number of vertices in each class for which isomorphism is to 

be identified by matching the values of k vertices in given 

graphs G1 and H1. As there are j vertices to be matched for k 

values, it takes at most j * k iterations to find the mismatch 

and at most j * k iterations to resolve the mismatch. This may 

be repeated at most j * k times, till isomorphism has been 

resolved in a given equivalence class. The above procedure is 

followed for all equivalence classes. Hence, time complexity 

for the given theorem is                 . In the 

worst case, there is only one equivalence class (i=1), hence, 
all vertices lie in the same equivalence class (j = n1) and are 

matched for all the vertex values (k = n1). Hence, 

computational complexity becomes 1*n1*n1 * (n1 * n1 + n1 

* n1) = n12 * (n12 + n12) and the order of complexity is 

given by O (n14).  

 

    Order of complexity for the given algorithm can be 

computed by combining the complexity for theorem 1 and 2 

and is given by O(m1n12+ n13) + O (n14). Thus the 

complexity of the algorithm is given by O (n14). 

VI. CONCLUSIONS AND FUTURE SCOPE 

In this paper, a polynomial time algorithm has been proposed 

for finding graph isomorphism. A new approach of using the 

concept of equivalence classes in conjunction with canonical 

representation of graphs has been proposed. Every vertex has 

some features that uniquely identifies it and distinguishes it 

from the other vertices. Exploiting these features by placing 

them together is the key to generate the canonical 

representation for the graph. The vertices that belong to the 

same equivalence class shows same features but can be 

distinguished from each other by their interaction with the 

other vertices. The future scope of the proposed algorithm 
can be seen in the field of networks. Network can be of any 

type such as network of modules, communication or flow 

analysis. The proposed algorithm finds its application in 

finding functional modules, program control flow analysis, 

mining communication networks, intrusion network analysis 

etc. 
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