

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.15

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 117

ABSTRACT- Graph isomorphism has been discussed in

the literature as NP-hard problem. It has applications in

various areas. Work done earlier in this area employs

backtracking for identifying isomorphism between given

two graphs as a result with the increase in size of the graph

the time to solve the problem becomes exponential. The

proposed work presents a polynomial time algorithm

(PTGI) which tries to solve graph isomorphism between

given two directed graphs. Some distinguishing features

associated with each vertex are stored. These features are
exploited in dividing the vertices of the graph into

equivalence classes from which canonical representation of

the graph is generated. Comparing these features of the

vertices of the given two graphs solves isomorphism in

polynomial time.

KEYWORDS- Graph isomorphism, canonical

representation, equivalence class, polynomial

I. INTRODUCTION

Graph isomorphism is one of the hardest problems that

need attention. It is defined as a bijection between the

vertices(nodes) of given graphs G1 and H1. A graph G1 can

be represented by G1 = (V1, E1). Depending on whether

the edge has a direction or not; graphs can be classified as

directed or undirected. Numerous algorithms were

presented earlier for solving graph isomorphism. In the year

1976, Ullmann [10] proposed an algorithm that uses

backtracking and reduces the size of the search space. In the

same year, Schmidt and Druffel [9] proposed another
backtracking algorithm that establishes initial partitions in

the graph by referring to the information stored in the

distance matrix of the graph. Around the same period,

Weisfeiler and Lehman [11] worked on canonical

representation of a graph in order to find stable partitions of

vertices in the graph. Nauty algorithm was proposed by

McKay [5] [6] in the year 1981 that constructs canonical

representation for the graph. It is considered to be the

fastest.

Manuscript received May 19, 2020

 Shalini Bhaskar Bajaj, Professor, Department of

Computer Science and Engineering, Amity University

Haryana, Gurugram, India (e-mail:
shalinivimal@gamil.com)

algorithm for finding isomorphism in graphs but Miyazaki

[7] in the year 1997 showed that there are certain categories

of graphs for which this algorithm takes exponential time.

In the year 2001, Cordella, Foggia, Sansone and Vento [1]

proposed VF2 which is a depth first search algorithm. VF2

uses a set of rules to efficiently prune the search space.

Another graph isomorphism algorithm ‘conauto’ was

discussed in the year 2004 by Presa and Farnandez [8] that

exploits both canonical representation and backtracking to

solve isomorphism. As the size of the graph increases,
computational time also increases exponentially and

restricts the algorithm applicability to smaller graphs. In the

year 1974, Hopcraft and Wang [3] developed polynomial

time algorithm for solving graph isomorphism that works

only for planar graphs. Luks [4] in the year 1982 worked

with bounded valance graphs for resolving isomorphism in

polynomial time. Though the above mentioned algorithms

can be completed in polynomial time but they impose

restrictions on the graphs. In the year 2018, a parallel

frequent subgraph mining algorithm was proposed wherein

the frequent subgraphs were mined in a single large graph
using Apache Spark framework [20]. In the same year,

Kaleido [19] was proposed that is an out of core graph

mining system on a single machine. Another algorithm was

proposed in the year 2018, which used Facenet graph

mining algorithm [16] to generate useful knowledge from

the communication transaction data. ASAP algorithm [17]

was also proposed in the same year which produces state of

art results in graph approximation theory. The ASAP

algorithm was also extended to the general graph patterns in

distributed settings. In the year 2019, fractal [18] was

proposed for supporting distributed graph pattern mining.

Fractal is a high performance and high productivity system
which employs a dynamic load balancing system based on

locality aware stealing and hierarchical mechanism. The

proposed approach aims at developing an algorithm for

finding graph isomorphism in polynomial time. This is

based on finding canonical representation for the given

graphs and grouping the vertices into a set of equivalence

classes so that the problem of isomorphism can be reduced

to solving isomorphism between the vertices in the same

equivalence class. For each vertex, the important

characteristic features like direct / indirect path(s), shortest

path length and count of the vertices traversed in all
available shortest paths are stored in the form of adjacency

list. Vertices belonging to same equivalence class can be

differentiated from each other on the basis of their

interaction with the vertices belonging to other equivalence

classes. Dividing vertices of a given graph into equivalence

Reducing Complexity of Graph Isomorphism

Problem
Shalini Bhaskar Bajaj

Reducing Complexity of Graph Isomorphism Problem

 Copyright © 2020. Innovative Research Publication. All Rights Reserve 118

classes solves isomorphism problem in polynomial time.

Count of vertices in all the equivalence classes in the two

graphs is same; if the given two graphs under test exhibit

isomorphism.

 The present paper is divided into different sections

focusing on providing overview of the earlier work, giving
details on the proposed work, explaining the proposed work

with the help of an example and arriving at the

computational complexity of the proposed work. Section 2

gives overview of the work done in the previous years in

this area, section 3 discusses the proposed approach- PTGI,

section 4 presents detailed discussion on the proposed

algorithm-PTGI, section 5 gives computational complexity

of PTGI and last section gives concluding remarks.

II. OVERVIEW OF THE EXISTING WORK

This section focuses on providing overview of the major

algorithms developed in the field of graph isomorphism.

Graph mining problem has gained importance gradually

and lot of new closeness measures were proposed for image

and pattern recognition. [12] The graph isomorphism

problem along-with the generalizations is essential in large

application areas which are directly dealing with similarity

problems such as pattern and image recognition [13].

 Algorithms discussed in the literature use either canonical

representation or backtracking or both. Nauty algorithm [5]

[6] identifies automorph groups in a set of vertex colored

graphs. This algorithm is based on group theory and

provides information about the set of generators, size of the

group and the orbits of the group. It also generates
canonically labeled isomorph to assist in testing

isomorphism. It uses backtracking which can be described

in terms of search tree. Except in simple cases, only parts of

the tree are generated; other parts are shown either

equivalent to the already existing parts or are shown as

uninteresting.

Figure 1 gives sample graph for generating automorphs

using Nauty agorithm and Figure 2 shows part of the search

tree generated using this algorithm. In Figure 2, DEF and

ABC are equitable partitions. Partition DEF is considered

for further partitioning and is represented as the target cell

(underlined in Fig. 2). The labels on tree edges represents
the target set element being fixed, for example, the first

edge shows that element D is fixed and second edge shows

that element E is fixed. Further partitioning is done in the

same way. All leaves in the search tree generated are

equivalent. Figure 2 show automorphs (AC) (DF) and (BC)

(EF).

 Fig 1: Sample graph for generating automorphs using Nauty Fig 2: Part of search tree generated using Nauty

 VF2 [1], a depth first algorithm is a deterministic matching

method that can be used for identifying both graph and

subgraph isomorphism. The algorithm does not impose any

constraints on the graph topology and hence can exploit the
semantic information associated with nodes and edges. As

this algorithm takes less memory, it can be used with large

graphs. The algorithm prunes the search space by using

certain set of rules. The memory requirement of this

algorithm is linear in number of nodes and the number of

edges.

 Conuto algorithm [8] tries to resolve isomorphism by

identifying automorphs and generating series of partitions. It

works on the following steps: sequence of vertex partitions is

built; autotrophism is identified without backtracking

technique; Even if automorphism is not resolved till this

stage, sequence of partitions are generated in the second
graph (that matches first graph) using backtracking. Conauto

used adjacency matrix representationand checks the count of

vertices and edges in the given graphs. Graphs with same

count for vertices and edges qualify for partitioning.

 Conauto algorithm behaves uniformly for all classes of
graphs on the other hand Nauty and VF2 algorithms have

specific classes of graphs for which they take large amount of

time even if graphs are smaller in size. Worst case time

complexity for the all these algorithms is exponential as

backtracking is used. In 2016, Mortuza proposed polynomial

time algorithm for graph isomorphism [15] for a specific

category of the graphs that are not locally triangle-free.

Another algorithm, GI-Ext is capable of dealing graphs with

large number of edges (approx. thousand) but is more suited

for partial isomorphism as compared to subgraph

isomorphism problem. [14].

[(D)(E)(F)|(A)(B)(C)]

[(D)|(E)(F)|(B)(C)|(A)]
[(E)|(D)(F)|(A)(C)|(B)]

(

D

)

(

E

)

(

E

)

(

F

)

(

D

)

([)D|(E)|(F)|(C)|(B)|(A)] [(D)|(F)|(E)|(B)|(C)|(A)]

[(E)|(D)|(F)|(C)|(A)|(B)]

(A

)

(F)

(D

)

(C

)

(B

)

(E

)

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.15

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 119

III. PROPOSED APPROACH.-PTGI

In PTGI, adjacency matrix definition is modified as discussed

below. For graph G1, adjacency list can be represented by

A_L (G1) for the given n vertices. Each node in the

adjacency list represents the shortest distance between the

given two vertices x and y. The characteristics features of the

vertices x and y helps in identifying isomorphism. The format

used for storing information in adjacency list is discussed as
follows. For storing information about the shortest path from

x to y the adjacency list for vertex x will have the value

[y]|[shxy]|[shdxy]|[Cyx]|[Cxy] and for vertex y it will be

[x]|[shyx]|[shdyx]|[Cxy]|[Cyx] where

[shxy] = dp if there is a direct path between x and y;

 = ip if there is an indirect path between x and y;

[shdxy]= shortest path between x and y;

 [Cyx] = count of the vertices in the shortest path between y

and x (including x and y);

[Cxy] = count of the vertices in the shortest path between x

and y (including x and y).

 Breadth first search is used to identify shortest paths

between all vertex pairs and details are noted using the

format defined above. Canonical representation for the graph

is generated once the graph is recorded as adjacency list. For

finding canonical representation, all distinct values in the

adjacency list are identified and their occurrence is recorded

for each vertex along-with the in-degree and out-degree for

the vetex. This gives the summary regarding the

characteristics of the vetex which is represented by CSV
(Characteristic Summary of the Vertex). For different

vertices CSV is recorded and is arranged in increasing or

decreasing order and is assigned a class number. The vertices

sharing same CSV are assigned to the same equivalence

class.

 Graphs under consideration are compared once their

canonical representation is generated. For finding

isomorphism, the given two graphs must have the same
number of equivalence classes and each class must have

same number of vertices belonging to it. Vertices in the same

equivalence class from the two graphs are compared for their

distinguishing features. If vertices of all the equivalence class

shows mapping between their vertices (in the given graphs),

isomorphism is detected else the two graphs are not

isomorphic.

A. Algorithm:

1. Traverse all possible shortest paths between vertex x and y

in the given graph G1 using Breadth First Search algorithm.

If there is only one shortest path between vertex x and y then

find the cardinality of the vertices encountered in the

identified shortest path else find the cardinality of the union

of the vertices encountered in all the identified shortest paths.

2. Create Adjacency list representation, for graph

G1 (as explained above).

3. Compute canonical representation for the given graph G1

(as explained above).

4. Perform step 1 to step 3 for given graph H1.

5. Compare the vertex belonging to the same equivalence

class from the adjacency lists of graph G1 and H1. If all the

equivalence classes in the two graphs have same number of

vertices, then the vertices of the respective equivalence

classes from the two graphs are matched for their

distinguishing features. If all the vertexes of all the

equivalence classes show same features, isomorphism is

detected.

IV. ILLUSTRATIONS OF THE PROPOSED

ALGORITHM – PTGI

PTGI is explained as follows using an example. Figure 3 and

Figure 4 gives two graphs G1and H1 respectively. Graph G1
and graph H1 has a set of twenty vertices. Figure 5 shows the

adjacency list of graph G1

.

Fig. 3: Graph G1 for testing isomorphism

14 15

17

19

12 13

18

7

8

6

9

0

1

11

5 4

10

16

2

3

Reducing Complexity of Graph Isomorphism Problem

 Copyright © 2020. Innovative Research Publication. All Rights Reserve 120

Fig. 4: Graph H1 for testing isomorphism

Fig. 5: Adjacency list representation for storing shortest paths from different nodes in graph G1

1

7

0

5

1

3

3

1

0

9
7

1

4

1

1

1

2

1

5

8

1

2

4 6

1

6

1

8

1

9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3|dp|1|0|2

13|dp|1|2|0

14|dp|1|2|0

 3|dp|1|0|2

12|dp|1|2|0

15|dp|1|2|0

0|dp|1|0|2

2|ip|2|0|3

4|dp|1|2|0

7|dp|1|2|0

 0|dp|1|0|2

2|ip|2|0|3

5|dp|1|2|0

6|dp|1|2|0

2|dp|1|0|2

12|dp|1|2|0

13|ip|2|3|0

14|dp|1|2|0

2|dp|1|0|2

12|ip|2|3|0

13|dp|1|2|0

15|dp|1|2|0

1|dp|1|0|2

3|ip|2|0|3

4|dp|1|2|0

5|ip|2|3|0

6|dp|1|2|0

 1|dp|1|0|2

3|ip|2|0|3 4|ip|2|3|0

5|dp|1|2|0

7|dp|1|2|0

2|ip|2|0|3

3|ip|2|0|3

13|dp|1|2|0

16|dp|1|0|2

18|dp|1|0|2

 2|ip|2|0|3

3|ip|2|0|3

12|dp|1|0|2

17|dp|1|0|2

19|dp|1|0|2

2|ip|2|0|3

3|ip|2|0|3

15|dp|1|0|2

16|dp|1|0|2

17|ip|2|0|3

19|dp|1|0|2

2|ip|2|0|3

3|ip|2|0|3

14|dp|1|0|2

16|ip|2|0|3

17|dp|1|0|2

18|dp|1|0|2

2|dp|1|0|2 4|ip|2|3|0 5|ip|2|3|0

6|ip|2|3|0

7|ip|2|3|0

8|dp|1|2|0 9|dp|1|2|0

3|dp|1|0|2

4|ip|2|3|0

5|ip|2|3|0

6|ip|2|3|0

7|ip|2|3|0

10|dp|1|2|0

11|dp|1|2|0

0|ip|2|0|3

1|ip|2|0|3

2|ip|3|0|4

3|ip|3|0|4

5|dp|1|0|2

9|dp|1|0|2

10|dp|1|0|2

 0|ip|2|0|3

1|ip|2|0|3

2|ip|3|0|4

3|ip|3|0|4

4|dp|1|2|0

8|dp|1|0|2

11|dp|1|0|2

0|ip|2|0|3 1|ip|2|0|3 2|ip|3|0|4 3|ip|3|0|4 7|dp|1|0|2 8|dp|1|0|2

10|dp|1|0|2

11|ip|2|0|3

0|ip|2|0|3

1|ip|2|0|3

2|ip|3|0|4

3|ip|3|0|4

6|dp|1|0|2

9|dp|1|0|2

10|ip|2|0|3

11|dp|1|0|2

0|dp|1|2|0

4|ip|3|4|0 5|ip|3|4|0 6|ip|3|4|0

7|ip|3|4|0

8|ip|2|3|0 9|ip|2|3|0 12|ip|2|3|0

15|ip|2|3|0

13|ip|2|3|0

16|dp|1|2|0

17|dp|1|2|0

14|ip|2|3|0

1|dp|1|2|0 4|ip|3|4|0 5|ip|3|4|0 6|ip|3|4|0 7|ip|3|4|0 10|ip|2|3|0 11|ip|2|3|0 12|ip|2|3|0

15|ip|2|3|0

13|ip|2|3|0

19|dp|1|2|0

14|ip|2|3|0

18|dp|1|2|0

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.15

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 121

Canonical representation also known as Characteristics

Summary of the Vertex (CSV) of graph G1 generated using

the adjacency list is given in Table 1. CSV for all the vertices

is read vertically and is arranged in increasing or decreasing

order. Vertices with same CSV falls under the same

equivalence class. In the sample example discussed here, for

graph G1, the CSV’s of the vertices are arranged in
increasing order in order to give equivalence class labels.

For example, CSV of vertices 18 and 19 is read as 00002121

(read the column of vertex 18 and 19 from top to bottom) and

the CSV of the vertices 8 and 9 are read as 00012121. Since

00002121 is the smallest number in the CSV thus vertex 18

and 19 are given equivalence class label 1. CSV and

equivalence class number of the different vertices of graph

G1 are given in Table 1(a). Equivalence class labels in table 1

are given in the last row. In the similar fashion adjacency list

and CSV of graph H1 is generated. CSV and equivalence
class number of the different vertices of graph H1 are given

in Table 2(a).

Table1: Characteristic Summary of vertices of graph G1

Vertex Label

Vertex

Characteristic

 Summary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ip|3|4|0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ip|3|0|4 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

ip|2|3|0 4 4 6 6 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

ip|2|0|3 0 0 0 0 3 3 2 2 1 1 1 1 3 3 2 2 0 0 0 0

dp|1|2|0 2 2 3 3 0 0 1 1 2 2 2 2 0 0 1 1 2 2 2 2

dp|1|0|2 1 1 0 0 3 3 2 2 1 1 1 1 3 3 2 2 1 1 1 1

InD_V 2 2 3 3 0 0 1 1 2 2 2 2 0 0 1 1 2 2 2 2

OutD_V 1 1 0 0 3 3 2 2 1 1 1 1 3 3 2 2 1 1 1 1

Equivalence Class

Label
7 7 10 10 9 9 8 8 2 2 6 6 4 4 3 3 5 5 1 1

Table 1(a): CSV of different vertices of Graph G1arranged in increasing order

Vertex of graph G1 CSV Equivalence Class

Label

18 and 19 00002121 1

8 and 9 00012121 2

14 and 15 00021212 3

12 and 13 00030303 4

16 and 17 00102121 5

10 and 11 00112121 6

0 and 1 00402121 7

6 and 7 02021212 8

4 and 5 02030303 9

2 and 3 40603030 10

Reducing Complexity of Graph Isomorphism Problem

 Copyright © 2020. Innovative Research Publication. All Rights Reserve 122

Table 2: Characteristic Summary of vertices of graph H1

 Vertex Label

Vertex

Characteristic

Summary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ip|3|4|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4

ip|3|0|4 0 0 0 0 0 2 0 2 0 0 0 0 0 0 2 0 0 2 0 0

ip|2|3|0 0 1 0 4 0 0 0 0 0 1 4 0 0 0 0 1 1 0 6 6

ip|2|0|3 1 1 2 0 3 2 0 3 0 1 0 2 3 1 3 0 0 2 0 0

dp|1|2|0 2 2 1 2 0 1 2 0 2 2 2 1 0 2 0 2 2 1 3 3

dp|1|0|2 1 1 2 1 3 2 1 3 1 1 1 2 3 1 3 1 1 2 0 0

InD_V 2 2 1 2 0 1 2 0 2 2 2 1 0 2 0 2 2 1 3 3

OutD_V 1 1 2 1 3 2 1 3 1 1 1 2 3 1 3 1 1 2 0 0

Equivalence Class

Label
2 6 3 7 4 8 1 9 1 6 7 3 4 2 9 5 5 8 10 10

Table 2(a): CSV of different vertices of Graph H1arranged in increasing order

Vertex of graph G1 CSV Equivalence Class Label

6 and 8 00002121 1

0 and 13 00012121 2

2 and 11 00021212 3

4 and 12 00030303 4

15and 16 00102121 5

1 and 9 00112121 6

3 and 10 00402121 7

5 and 17 02021212 8

7 and 14 02030303 9

18 and 19 40603030 10

Table 3: Isomorphism between the vertices of graph G1 and graph H1

Equivalenc

e Class

Label

graph G1 graph H1
Equivalence

Class Label
graph G1 graph H1

1 {18, 19} {6, 8} 6 {10, 11} {1, 9}

2 {8, 9} {0, 13} 7 {0, 1} {3, 10}

3 {14, 15} {2, 11} 8 {6, 7} {5, 17}

4 {12, 13} {4, 12} 9 {4, 5} {7, 14}

5 {16, 17} {15, 16} 10 {2, 3} {18, 19}

 By matching the equivalence class labels in Table 1 and

Table 2, it can be concluded that isomorphism exists between

the following vertex set of graph G1 and H1 (refer Table 3).

In order to resolve isomorphism between the vertices

belonging to the same equivalence class of the given two

graphs, distinguishing features noted for vertices of the two

graphs are compared. For example, equivalence class 1 of

graph G1 has vertices 18 and 19. From Figure 5, it is

observed that vertex 18 has shortest paths with vertices 3, 13,

14 and vertex 19 has shortest paths with vertices 3, 12, 15.

Further, it is observed from Table 3 that vertex 3 belongs to

equivalence class 10, vertices 12 and 13 belong to

equivalence class 4 and vertices 14 and 15 belong to

equivalence class 3. Similarly, vertices 6 and 8 of

equivalence class 1 in graph H (refer Table 3), interact with

vertices of equivalence classes 3, 4 and 10. Hence, all the

vertices of equivalence classes 3, 4 and 10 are considered in

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.15

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 123

resolving isomorphism between the vertices of equivalence

class 1.

Table 4: Vertices of equivalence class 1 of graph G1

Vertex of
EC+ 3, 4,

10

Vertex

of EC + 1

EC+ 3 EC+ 4 EC+ 10

14 15 12 13 2 3

18 d|1|2|

0

i|0|0|0 i|0|0|0 d|1|2|

0

i|0|0|0 d|1|0|

2

19 i|0|0|0 d|1|2|

0

d|1|2|

0

i|0|0|0 i|0|0|0 d|1|0|

2

Table 5: Vertices of equivalence class 1 of graph H1

Vertex of

EC+ 3, 4,
 10

Vertex

of EC + 1

EC+ 3 EC+ 4 EC+ 10

2 11 4 12 18 19

6 i|0|0|

0

d|1|2

|0

d|1|2

|0

 i|0|0|0 i|0|0|0 d|1|0|

2

8 d|1|2

|0

i|0|0|

0

i|0|0|

0

d|1|2|0 i|0|0|0 d|1|0|

2

Rows of Tables 4 and 5 show vertices of equivalence class 1

of graph G1 and H1 respectively for which isomorphism is to

be resolved, the columns of the given Tables show the

vertices of equivalence classes 3, 4 and 10 with which

vertices of equivalence class 1 has shortest path and elements
of the given Tables show the distinguishing features on the

basis of the interaction of the vertices of equivalence class 1

with the vertices of equivalence classes 3, 4 and 10.

 From Tables 4 and 5, it is observed that isomorphism can

be resolved between the vertices of equivalence class 1 of

graph G1 and H1. It is seen from Tables 4 and 5 that the

distinguishing features match between the vertex pairs (18,

14) and (6, 11) of Graph G1 and H1 and likewise all the

matching pairs are found which is shown in Table 6.

Table 6: Vertex pairs of graph G1 and graph H1 matched for

respective vertex pair values

graph G1 graph H1

(18, 14) (6, 11)

(19, 14) (8, 11)

(18, 13) (6, 4)

(19, 13) (8, 4)

(18, 15) (6, 2)

(19, 15) (8, 2)

(18, 2) (6, 18)

(19, 2) (8, 18)

(18, 12) (6, 12)

(19, 12) (8, 12)

(18, 3) (6, 19)

(19, 3) (8, 19)

 Hence, it can be inferred that in equivalence class 1,

following vertices of graph G1 and H1 are isomorphic (refer
Table 7).

Table 7: Vertices belonging to equivalence class 1 of graph

G1 and H1 showing isomorphism

graph G1 graph

H1

18 6

19 8

 For all other equivalence classes same procedure is

repeated to resolve isomorphism between the vertices of the

given graphs. Table 8 show vertices of the two graphs G1 and

H1 that shows isomorphism.

Table 8: Vertices of graph G1 and H1 showing isomorphism

graph

G1

graph H1 graph

G1

graph

H1

18 6 15 2

19 8 12 12

8 0 13 4

9 13 16 16

14 11 17 15

10 1 7 17

11 9 4 14

0 3 5 7

1 10 2 18

6 5 3 19

 Hence, it is seen that isomorphism problem can be resolved

between the given two graphs by comparing vertices

belonging to the same equivalence class which can be

computed in polynomial time.

Reducing Complexity of Graph Isomorphism Problem

 Copyright © 2020. Innovative Research Publication. All Rights Reserve 124

V. COMPUTATIONAL COMPLEXITY OF PTGI

Computational complexity of the proposed algorithm PTGI is

discussed in this section. Following definition, lemma and

theorem will prove that the proposed algorithm terminates in
polynomial time.

Definition 1Given vertices n1 and edges m1 of the graph G1,

let shd be the total number of shortest paths such that n1 X

m1 < shd < n1 X n1 then the complexity in terms of space of

the given graph G1 is less than n1 X n1.

Lemma 1 Given vertices n1 and edges m1 in graph G1,

breadth first search algorithm can be used for finding all

possible shortest paths between vertex x and y in graph G1 in

O(n1 + m1) time [2].

Theorem 1 Given vertices n1 and edges m1 in graph G1, the

adjacency list representation for storing shortest path details

between all vertex pair for the given graph G1 can be

computed in O (n13 + m1n12) time.

Proof: Let the total number of shortest paths identified
between given vertex x and all other vertices be shdx, then for

n1 such vertices,

 = n12. As it takes atmost (n1+m1)

iterations (refer Lemma 1) to find shortest distance and to

group all vertices encountered if there are more than one

shortest path between the given pair of vertex (x, y).

Therefore, order of complexity is given by O (n13 + m1n12).

Theorem 2 Equivalence class labels can be computed in
polynomial time

Proof: Let n be the number of vertices. In order to find the

equivalence class of the vertex, its CSV needs to be

compared with the CSV of all the vertices. Thus, in order to

compare the CSV of a vertex with all the other vertices it

takes n iterations. Therefore, the total number of iterations

needed to compare the CSV of all the vertices with every

other vertex is n*n. Hence, the complexity of finding
equivalence class labels is O (n2).

Theorem 3 Graph isomorphism problem can be solved in

polynomial time

Proof: Let i be the number of equivalence classes; j be the
number of vertices in each class for which isomorphism is to

be identified by matching the values of k vertices in given

graphs G1 and H1. As there are j vertices to be matched for k

values, it takes at most j * k iterations to find the mismatch

and at most j * k iterations to resolve the mismatch. This may

be repeated at most j * k times, till isomorphism has been

resolved in a given equivalence class. The above procedure is

followed for all equivalence classes. Hence, time complexity

for the given theorem is . In the

worst case, there is only one equivalence class (i=1), hence,
all vertices lie in the same equivalence class (j = n1) and are

matched for all the vertex values (k = n1). Hence,

computational complexity becomes 1*n1*n1 * (n1 * n1 + n1

* n1) = n12 * (n12 + n12) and the order of complexity is

given by O (n14).

 Order of complexity for the given algorithm can be

computed by combining the complexity for theorem 1 and 2

and is given by O(m1n12+ n13) + O (n14). Thus the

complexity of the algorithm is given by O (n14).

VI. CONCLUSIONS AND FUTURE SCOPE

In this paper, a polynomial time algorithm has been proposed

for finding graph isomorphism. A new approach of using the

concept of equivalence classes in conjunction with canonical

representation of graphs has been proposed. Every vertex has

some features that uniquely identifies it and distinguishes it

from the other vertices. Exploiting these features by placing

them together is the key to generate the canonical

representation for the graph. The vertices that belong to the

same equivalence class shows same features but can be

distinguished from each other by their interaction with the

other vertices. The future scope of the proposed algorithm
can be seen in the field of networks. Network can be of any

type such as network of modules, communication or flow

analysis. The proposed algorithm finds its application in

finding functional modules, program control flow analysis,

mining communication networks, intrusion network analysis

etc.

REFERENCES

 [1] L. P.Cordella, P. Foggia, C. Sansone and M. Vento, An

improved algorithm for matching large graphs, In Proc.

of the 3rd IAPR-TC15 Workshop on Graph-based

Representations in Pattern Recognition, Ischia (Italy),

(2001).

[2] T. Coreman, C. Leiserson and R. Rivest, Introduction to

Algorithms, Cambridge, MA: MIT Press, 1990.

[3] J. Hopcroft and J. Wong, Linear Time Algorithm for

Isomorphism of Planar Graphs, Proc. 6th Annual ACM

Symp. Theory of Computing, (1974) 172-184.

[4] E.M. Luks, Isomorphism of Graphs of bounded valance

can be tested in polynomial time, Journal of Computer
System Science, (1982) 42-65.

[5] B. D. McKay, The nauty page, March 2004,

http://cs.anu.edu.au/~bdm/nauty/

[6] B.D. McKay, Practical Graph Isomorphism, Congressus

Numerantium, 30 (1981) 45-87.

[7] T. Miyazaki, The complexity of McKay’s canonical

labeling algorithm, in Groups and Computation, II L.

Finkelstein and W. M. Kantor, eds., Amer. Math. Soc.,

Providence, RI, (1997) 239-256.

[8] Jose Luis Lopez-Presa and Antino Fernandez, Graph

Isomorphism Testing Without Full Authmorphism
Group Computation, vol. 4 (2004), No. 3 (TR-GSYC-

2004-3).

[9] D.C. Schmidt and L.E. Druffel, A Fast Backtracking

Algorithm to Test Directed Graphs for Isomorphism

Using Distance Matrices, 23 (1976) 433-445.

[10] J.R. Ullman, An Algorithm for Subgraph Isomorphism,

Journal of the Association for Computing Machinery, 23

(1976) 31-42.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.15

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 125

[11] B. Weisfeiler and Lehman, On Construction and

Identification of Graphs, Lecture Notes in Math,

Springer, Berlin, 558 (1976).

[12] Jose Luis Lopez-Presa and Antonio Fernandez Anta.

Fast Algorithm for Graph Isomorphism testing, In SEA,
volume 5526 of LNCS, pages 221-232, 2009

[13]S. Auwatananmongkol. Inexact graph matching using a

genetic algorithm for image recognition. Pattern

Recognition Letters, 28912), pages 1428-1437, 2007

[14]D. Conte, P. Foggia and M. Vento. Challenging

complexity of maximum common subgraph detection

algorithms: A performance analysis of three algorithms

on a wide database of graphs. Journal of Graph

Algorithms and Applications, 11(1), pages 99-143, 2007

[15] Fahad Bin Mortuza. A Polynomial Time Graph

Isomorphism Algorithm for Graphs that are not locally
Triangle-free, Cornell University Library, 2016

[16] Imelda Atastina, Benhard Sitohang, G.A.Putri Saptawati

and Veronica S. Moertini. An implementation of graph

mining to find evolution of communication data records.

In the Proceedings of the 2018 Intl. Conf. on Data

Science and InformationTechnology (DSIT ’18),

Singapore, July 20-22, 2018, pp. 79-84, 2018

[17] Anand Padmanabha Iyer, Zaoxing Liu and Xin Jin,

Shivaram Venkataraman, Vladimir Braverman and Ion

Stoica, ASAP: Fast, Approximate Graph Pattern Mining

at Scale, Open Access to the Proc. of the 13th USENIX

Symp. On Operating System Design and

Implementation, October 8-10, 2018, Carlsbad, CA,

USA

[18] Vinicius Dias, Carlos H.C. Teixeira, Dorgival Guedes,

Wanger Meira and Srinivasan Parthasarthy, Fractal: A

General-Purpose Graph Pattern Mining System, In Proc.
Of the 2019 Intl. Conf. on Management of Data

(SIGMOD ’10), Amserdam, Netherlands, Jun 30- Jul 5,

2019, pp. 1357-1374

[19] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng and

Xueqi Cheng, Kaleido: An efficient out of core graph

mining system on a single machine, Proc. Of the VLDB

Endowment, vol. 11, no. 13, 2018, DOI:

https://doi.org/TBD

[20] Fengcai Qiao, Xin Zhang, Pei Li, Zhao Y un Ding,

Shanshan Jia and Hui Wang, A parallel approach for

frequent subgraph mining in a single large graph using
spark, Appl. Science, 2018, vol. 8, pp. 230, DOI:

10.3390/app8020230

 ABOUT THE AUTHOR

1. Shalini Bhaskar Bajaj is working as Professor and HoD

(Computer Science and Engineering). She completed her

Ph.D. from IIT Delhi and is working in the field of Data

Mining and Analytics. She is having 20 years of experience

as an academician. She has more than 50 publications in

reputed journals/conferences.

