
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.8

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 81

Version Locking Mechanism in Database

Swati

ABSTRACT-The distributed database provides a resource

sharing environment, where multiple transactions at different

sites coexist in order to access the resources. In this paper we

investigate multi version locking protocol in distributed

environment. Multi-version database has the potential to

significantly increase the amount of concurrency in

transaction processing as they can avoid read-write conflict

by completing the read requests with older versions of data

while the write operation is in progress. These algorithms are

particularly effective for long queries, which otherwise

cannot finish due to the high probability of conflict with

other transactions. We have given an improvement on the

algorithm proposed by Jie shao. We have not imposed any

restriction on the involvement of all the existing sites to

obtain a global version which thereby reduces the burden on

each individual site. Our scheme involves the collection of

local transaction identifier only from the participating site

whether it can be one or many. We have proposed our new

algorithm to obtain a correct version for a particular data

item during read and write operation.

KEYWORDS- Local transaction identifier; Global

consistent snapshot version; Serializability.

I. INTRODUCTION

A distributed database management system is a collection of

inter related sites which are connected by a computer

network. The data base management system includes a

concurrency control protocols that coordinate the execution

of multiple transactions [14, 8] which is an essential part of

the database system. It is used to handle the concurrent

execution of operations by different transactions on the same

data item while maintaining the serializability in the

schedules and managing the atomicity, consistency, isolation

and durability properties of the transactions [4].

The database system must choose either of the two

alternatives for handling the updates: (1) either to overwrite

the old data with the new data (“update-in-place systems”) or

(2) to write a new copy of the record with the new data,

append it with the old data (“multi-versioned systems”)

[9,16].

Manuscript Received May 2, 2020

 Swati, Department of Computer Science, Amity University,

Haryana Gurgaon, India (email: sgupta@ggn.amity.edu)

The primary advantage of multi versioned systems is that

the transactions can write to a particular record while the

read operation on the same record proceed in parallel .As a

result read transaction do not block write transaction this is

possible because any read operation can read the older

versions until the write transaction has committed. [9,2].We

can consider history H1 to illustrate the following concept.

H1:r1(p,0),w2(p,4),w2(q,6),c2,r1(q,0),c1.

In the given history H1 T1 and T2 are the two

transactions (r1, w2) is the read and write operation for

transaction T1 and T2 respectively, c1 and c2 is the commit

action for the two transactions. The mode of operation for the

transaction are T1[r1(p,0),r1(q,0) and

T2[w2(p,4),w2(q,6)].The read on q by T1 gives the value 0

but will not give the value of latest write of 6 carried out by

transaction T2 which commit before T1.This is possible by

storing multiple version of the data item q. If no multiple

versions would have being maintained than the transactions

T1 would abort. A global consistent snapshot is required to

eliminate the problem of data inconsistency in the distributed

system so that update can be propagated to all the relevant

sites. In this paper we have proposed our distributed multi-

version concurrency control (DMVCC), protocol that ensures

that the global snapshot version is obtained by consulting

only the participating sites, we primarily stress on reducing

the burden on all the existing sites in the distributed

database. In this paper we have given an improvement on the

algorithm proposed by [3].In order to obtain global version of

the data we have proposed our algorithm which is refinement

over the work carried out so far in distributed environment.

II. ARCHITECTURE OF DISTRIBUTED MULTI-

VERSION CONCURRENCY CONTROL

In a distributed database there are three main components:

the data records, distributed transaction manager (DTM) and

the consistency coordinator [3] as shown in “Fig.1”

Version Locking Mechanism in Database

Copyright © 2020. Innovative Research Publication. All Rights Reserve 82

Fig 1: Distributed Database Architecture [3]

 Details of each component are as follows:

A. Data records

The data records are the local databases which are being

stored at individual local sites and are independent of one

another. Whenever a request is made by the client the DTM

subdivides the request and assign them to individual local

sites. On the verge of commit operation by the transaction the

data records generate a snapshot version which is uniquely

identified by the local transaction identifier (LTID) and is

sent to the consistency coordinator which uses the LTIDs [3]

to determine a global consistent snapshot version.

B. Distributed transaction manager

The client initiates the request and contact the DTM which

split the transaction into sub-transactions and send them to

the corresponding data records present at individual local

site. The global copy of the data item is obtained when DTM

contact the consistency coordinator [3].The consistent version

is a set of local transaction identifier that are collected from

the data records which present the version of a particular data

item at each site which is being given by the notation

Global consistent snapshot=LTID1 ∪ LTID2 ∪….LTIDn

(where LTID1, LTID2…LTIDn are the local transaction

identifier generated from the associated sites)

C. Consistency coordinator

The consistency coordinator is used to calculate the global

snapshot version of a particular data item. The DTM contact

the consistency coordinator in two cases:

Case 1: When a request is made from client side to read a

particular data the DTM contact the consistency coordinator

Case 2: When the transaction completes its task at

individual site the LTID from the sites are sent to consistency

coordinator through DTM in order to obtain global version of

the data record

II. LITERATURE REVIEW

A number of algorithms have been proposed in the area of

multi version locking. Some important work in this area is as

follows:

JieShao et al[3]explains that in order to achieve read

consistency the system support snapshot read which do not

block write operation[3]. They proposed an architecture

which comprises of three main components: partition, DTM,

consistency coordinator. The concept of Local transaction

identifier (LTID) has been introduced to the number of

snapshot for each version number. The author proposed an

algorithm to calculate the global snapshot version which is

being created if LTID generated by each partition appeared

in a serial manner. The snapshot related to maximum LTID

values of each partition form a global consistent state [3].

Mohammad Sadoghi et al [10] proposed an KV

indirection index maintenance technique that is useful to

lessen the input/output burden by maintaining a single table

which contain both up to date and historical data known as

version enabled table. In order to prevent the change of

unaffected attribute the proposed technique [10] decouple the

physical and logical representation of record in order to

differentiate between physical row identifier and logical

record identifier

Kaloian Manassiev et al[5] proposed a method in which

update transaction create a new version which is being

broadcast to all other replicas. It evaluates a novel page level

distributed concurrency control algorithm. The paper

proposed two approach specifically update anywhere with no

scheduler support and master update with scheduler

support[5].The conflict is minimized in the master update by

transferring all update transaction on a master replica and

distributing read only transaction across a set of slave

replicas in a version aware manner.

David Lomet et.al[2] proposed a new form of conflict

manager known as timestamp conflict manager (TCM)

which associate any committed transaction with its

transaction timestamp which is made dependable with

transaction isolation order. The TCM maintain a series of

timestamp for a transaction.The paper has formulated certain

principles that control the access of read-write operation on

the particular data item. The timestamp range is adjusted

whenever any conflict occurs so that read is ahead of write.

This reduces transaction abort so that it there is no blocking

of the operation in the case of write-write or read-write

conflict.

Jose M Falerio et al[9] proposed a bohm, a new

concurrency protocol for main memory multi version

database system. It guarantee serializable execution while

ensuring that read never blocks writes by separating

concurrency control and version management from

transaction execution. The bohm method does not require

additional bookkeeping and coordination to achieve

serializability.

 Per Ake Larson et.al[7] discussed concurrency control

mechanism optimized for main memory database system. It

Client

DTM

Consistency

Coordinator

Data Records Data

message

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.8

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 83

has designed and implemented two multi version

concurrency control (MVCC) methods, one is optimistic

using validation phase and the other one is pessimistic which

uses locking. The paper has implemented a prototype main

memory storage engine which begins with a) high level

overview of how data is stored b)how it is read and how

updates are handled c) how to determine which version to

read.

Hoda M.Oet.al[6] et al proposed a new approach for

determining the optimal number of versions to be maintained

by determining the minimum timestamp from the linked list

and store it in an integer variable mint . The authors

presented an efficient and new scalable lock-free commit

algorithm that allows write transactions to progress in

parallel with garbage collection of unused versions.

Veluchandhar et.al[17] proposed an algorithm that uses

the concept of backup mechanism to improve upon the

performance of concurrent transactions. It uses multilevel

security for distributed databases. The sub query analyzer

monitors the data access and waiting time for the transaction.

The paper discusses the different levels of security which are

being effectively used for the enhancement of performance

for concurrent transactions. The different security levels

proposed in the model are view level, secret level and top

secret level [17]. The proposed security model allows a

transaction to issue read-down, read-equal and write-equal

operations which is sufficient to prove that along with data

access security is not violated.

Yang Zhan et al [4] paper introduces a method to convert

pointer-based data structures into efficient lock-free

implementations known as versioned programming. The

technique allows an existence of different version of node to

exist at the same time through an arbitrary composition of

pointer such that each thread can pick the most suitable

version and has a consistent view of the whole data

structure[4].In this paper versioned tree implementations has

been done [4]. With a fewer number of writers, versioned

programming surpassed read-log-update which lock nodes.

Robert Gottstein et al[16] present the multi-version

index(MV-IDX) approach which introduce the concept of

index only visibility checks which is being significantly used

to diminish the amount of input-output storage accesses thus

thereby reducing the maintenance of index overhead. The

technique achieve significantly lower response times and

higher transactional throughput on OLTP workloads [16].It

is an optimization to traditional indexing that partly

addresses the issue of indexing .The index is augmented by

index snippets which are comprised of a bitmap and a

timestamp, correlated to the database pages.[16] For each

page, a transactional timestamp is stored along with a single

bit for each tuple version in the corresponding page visibility

checks and the delay of index updates.

IV. PROPOSED APPROACH

The purpose of our algorithm is to obtain a global consistent

version of the individual data item in the distributed

environment. The scheme involve the collection of local

transaction identifier only from the participating site whether

it can be one or many and prohibits the involvement of all

individual sites to obtain the global version as discussed in

[3].This reduces the burden on each individual sites to

participate in the formation of global version.

We have taken into account only the participating sites

because of the following reasons:

1) Each version cannot be generated and present at all the

sites unlike in [3] which emphasize the involvement of every

individual site to obtain a global version. The highest version

can be obtained from a single site and can be made as global

version without prior existence of the same highest version at

all the sites.

2) Distributed database system itself paves the way for

data fragmentation as data is fragmented so only the

necessary data can be present at the individual site. We have

analyzed the read-write set at different sites in distributed

environment which would primarily stress on how the

version maintenance is done globally so that each site can

access the correct and consistent version of the data.

 Details of the proposed algorithm are given below

A. Proposed Algorithm

For a given transaction T

Subdivide the transaction T into sub transaction t1,

t2….tn and add them to transaction queue (T_Queue) which

contain the list of requesting transaction

while (T_Queue!=Empty)

Call for procedure Read_Set(I)

Call for procedure Write_Set(I)

End of T_Queue equals empty

 Procedure Read_Set(I):A transaction T read the data item I

 For all T in read mode

 DTM contact the consistency coordinator to obtain

global version

 Global LTID(I)=LTID(s1) ∪..LTID(sm)

/*s1 and sm are the participating site which were involved

to produce the global version*/

 Return successful execution and commit.

Procedure Write_Set(I):A transaction T want to write on

the data item I

Version Locking Mechanism in Database

Copyright © 2020. Innovative Research Publication. All Rights Reserve 84

while(Request_dataitem!=NULL)

{

DTM split the requesting T into sub transaction such that

T=t1, t2…tn

 If (requesting site=single individual site)

{

Global LTID=Max_LTID(s1)

/* Maximum Version obtained from single site and

notified through DTM to Consistency coordinator*/

}

Else

 If (requesting_site! =single individual site)

{

 Global LTID=LTID(s1)) ∪..LTID(sm)

/*The same highest version is generated at site s1 and sm

to obtain a global snapshot version*/

}}

Wait until all running transaction commit

B. Explanation of the Algorithm

For a given transaction T, the clients contact the DTM

which insert the transaction into transaction queue. If the

requesting transaction is read only than we call the procedure

read_set, the DTM contact the consistency coordinator to

obtain a global version. If the requesting transaction is update

than we call the procedure write_set, where DTM subdivide

the transaction into sub transaction if requesting site is single

individual site, than write is performed and a highest new

version obtained is sent to consistency coordinator through

DTM to obtain a global version without prior storage of the

new version on all the existing sites. But if the requesting

transaction involve more than one site than the same highest

version is taken from individual site and are taken together to

form a global snapshot version. The proposed algorithm

relaxes the condition of the compulsory existence of every

version created during transaction processing on all the

existing sites which was earlier proposed by [3].

C. Comparative Analysis

The paper [3] proposed a matrix to calculate the global

consistent version. In the matrix [3] each site is involved in

forming the global version as shown in the matrix below. In

order to obtain a global version for a particular data item, it

imposes the restriction on the presence of same highest

version to all the existing sites which is practically

impossible in distributed system. Consider there are three

sites S1, S2, S3 and three transactions T1, T2, T3 along with

local transaction identifier generated for the three sites in the

distributed environment as shown in tables 1 below

Table 1: Matrix for All Transaction Running At Every Site
[3]

 Let X=10

Table 2: Matrix for a Particular Data Item

 In the given matrix [3] from the table 1 and table 2 the

global version for the data item X is obtained by considering

the same highest version to be compulsory present at all the

distributed sites(S1,S2,S3).It means that the highest version

X=12 has to be present at all the existing sites.

The matrix proposed by Jie Shao [3] completely fails if we

consider the different snapshot version at a particular site

than we cannot obtain a global consistent version according

to the given matrix and algorithm proposed in [3].We have

consider the single highest version to be present at a

particular site as shown in table 3.Now with X=13 at site S3

as shown in table 4,we can obtain the global version of X this

relaxes the condition of the presence of the same data item on

all the existing sites.

Transaction/Sites S1 S2 S3

T1 X=12 X=10 X=11

T2 X=11 X=12 X=10

T3 X=10 X=11 X=12

T4 - - X=13

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-8, Issue-3, May 2020

https://doi.org/10.21276/ijircst.2020.8.3.8

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 85

Table 3: Matrix for Our Proposed Approach

 Let X=10

Table 4: Matrix for a Particular Data Item

V. CONCLUSION AND FUTURE SCOPE

The paper discusses the multi version locking in distributed

database. The drawbacks in the matrix proposed by [3] have

been identified and solution is proposed in this paper to

obtain the consistent version for the particular data item. Our

scheme involves the collection of local transaction identifier

only from the participating site whether it can be one or

many. The proposed algorithm is a refinement on the work

done so far. Any restriction on the involvement of all the

existing sites to obtain a global version has not been imposed.

This reduces the burden on each individual site. The future

scope lies in extending our work with an intend to validate

our new matrix for read and write operation in multi version

locking on distributed environment through simulation

experiments.

REFERENCES

[1]Marc Lupon, Grigorios Magklis and Antonio González,

“Version Management Alternatives for Hardware

Transactional Memory”,ACM Toronto, Canada, October

26, 2008

[2]David Lomet, Alan Fekete, Rui Wang and Peter

Ward,”Multi-Version Concurrency via Timestamp Range

Conflict Management”,pp 714-725, IEEE 28th

International Conference on Data Engineering,2012

[3]Jie Shao, Boxue Yin, Bujiao Chen, Guangshu Wang, Lin

Yang Jian,liang Yan, Jianying Wang and Weidong Liu

“Read Consistency in Distributed Database Based on

DMVCC”, pp 142-151, IEEE 23rd International

Conference on High Performance Computing 2016.

[4]Yang Zhan and Donald E. Porter, “Versioned

Programming: A Simple Technique for Implementing

Efficient, Lock-Free, and Composable Data Structures”,

SYSTOR ’16, Haifa, Isreal, ACM, 2016

[5] Kaloian Manassiev,Madalin Mihailescu and Cristiana

Amza “Exploiting Distributed Version Concurrency in a

Transactional Memory Cluster”pp 198-208, New York,

ACM 2006

 [6]Hoda M. O. Mokhtar and Nariman Adel Hussein “ A

Novel Mechanism for Enhancing Software Transactional

Memory”,pp 278-283, July 07-09, ,Portugal, ACM, 2014.

[7]Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig

Freedman, Jignesh M. Patel and Mike Zwilling” High-

Performance Concurrency Control Mechanisms for Main-

Memory Databases”,pp 298-309, 38th International

Conference on Very Large Data Bases,Proceedings of the

VLDB Endowment, Vol. 5, No. 4, August 27th, 2012.

[8]Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk and

Danny Dig “How Do Centralized and Distributed Version

Control Systems Impact Software Change”pp 322-333,

ICSE ’14, ACM, June,2014

[9]Jose M. Faleiro and Daniel J. Abadi,”Rethinking

serializable multiversion concurrency control”,pp 1190-

1201, Proceedings of the VLDB Endowment,

Vol.8,No.11,41st International Conference on Very Large

Data Bases, September 2015.

[10]Mohammad Sadoghi, Mustafa Canim, Bishwaranjan

Bhattacharjee,Fabian Nagel and Kenneth A.

Ross“Reducing Database Locking Contention Through

Multiversion Concurrency”pp 1331-1342, Proceedings of

the VLDB Endowment, Vol. 7, No. 13, 40th International

Conference on Very Large Data Bases, September 1st 5th

2014, Hangzhou, China.

[11]Juchang Lee, Hyungyu Shin, Chang Gyoo Park” Hybrid

Garbage Collection for Multi-Version Concurrency

Control in SAP HANA”pp 1307-1318, SIGMOD, ACM.

June 26-July 01, 2016, San Francisco, CA, USA.

[12]Justin Levandoski, David Lomet, Sudipta Sengupta,

Ryan Stutsman, and Rui Wang” Multi-Version Range

Concurrency Control in Deuteronomy”,pp 2146-2157,

Proceedings of the VLDB Endowment, Vol. 8, No. 13,

42nd International Conference on Very Large Data Bases,

September 5th – September 9th 2016, New Delhi, India.

[13]Joao A. Silva, Joao M. Lourenço and Herve Paulino”

Boosting Locality in Multi-version Partial Data

Replication”,pp 1311-1314, SAC’15, ACM, April 13–17,

2015, Salamanca, Spain.

 [14]Eran Chinthaka Withana, Beth Plale, Roger Barga and

Nelson Araujo” Versioning for Workflow Evolution”, pp

756-765, HPDC'10, ACM, June 20–25, 2010, Chicago,

Illinois, USA.

Transaction/Sites S1 S2 S3

T1 3 1 2

T2 2 3 1

T3 1 2 3

T4 - 4

Transaction/Sites S1 S2 S3

T1 X=12 X=10 X=11

T2 X=11 X=12 X=10

T3 X=10 X=11 X=12

T4 - - X=13

Version Locking Mechanism in Database

Copyright © 2020. Innovative Research Publication. All Rights Reserve 86

[15]Nirmit Desai and Frank Mueller” Scalable Distributed

Concurrency Services for Hierarchical Locking”

Proceedings of the 23rd International Conference on

Distributed Computing Systems (ICDCS’03) IEEE, 2003

[16]Robert Gottstein, Rohit Goyal, Sergej Hardock, Ilia Petro

and Alejandro Buchmann” MV-IDX: Indexing in Multi-

Version Databases”, pp 142-145, ACM, July 07 - 09

2014, Porto, Portugal

