

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552, Volume- 8, Issue- 5, September- 2020

https://doi.org/10.21276/ijircst.2020.8.5.6

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 365

ABSTRACT- Estimating understandability of object

oriented software early in the development process;

particularly at design phase greatly reduce the overall

development cost and effort. To design and deliver quality

products inside time and financial plan understandability

plays a very important role. This paper shows the need and

significance of understandability at design phase and build

up a multivariate linear model “Understandability

Estimation Model” for Object-Oriented Design. Developed

model estimates the understandability of class diagrams in

respect of their internal design properties. In this research

paper an attempt has been made to propose an

understandability estimation framework as a first

contribution. A relation between object oriented design

properties and understandability has been established as a

second contribution. In third contribution, despite the fact

that, in order to estimate class diagram’s understandability

the researcher further developed multivariate models. In

conclusion the proposed Understandability models have

been authenticated via experimental test.

.

KEYWORDS- Understandability, Modifiability, Object

Oriented Software, Design Phase, Design Construct.

I. INTRODUCTION

Now day’s software engineering has turn into

tremendously vital discipline of study, research and

practice. Everyone are working hard to decrease the

problems and to meet the purpose of developing

high-quality understandable, testable software that is

delivered on time, within budget, and furthermore satisfies

the requirements [1, 3, 5]. Software has become significant

Manuscript received September 20, 2020

Dr. Abdullah, Assistant Professor, Department of

Information Technology, Adigrat University (A Public

University), Adigrat- Tigray, Ethiopia-Africa, (e-mail:

abdullahkhan.ap@adu.edu.et)

Teklay Teklu1, Lecturer, Department of Information

Technology, Adigrat University (A Public University),

Adigrat- Tigray, Ethiopia-Africa,

Haftay Gebrezgabiher, Lecturer, Department of

Information Technology, Adigrat University (A Public

University), Adigrat- Tigray, Ethiopia-Africa,

Manoj Kumar, Senior Assistant Professor, Department

of Information Technology, International Institute for

Special Education, Lucknow, Uttar Pradesh, India

to expansion in almost all areas of human endeavor. The

ability of programming merely is no longer sufficient to

make big programs. There are severe problems in the cost,

timeliness, testing, maintenance and quality of several

software products [2, 6]. Software engineering has the

purpose of solving these problems by producing feature-

quality understandable, testable and maintainable software

within time, financial plan. To attain this goal, we

encompass to center in a closely controlled way on both the

quality of the product and on the process used to develop the

product [4, 7].

In today’s world, the importance of delivering quality

software is no longer an advantage but a necessary factor.

However, with the growing Modifiability, pervasiveness

and criticality of software, major factor of assuring that it

behaves according to the desired level of quality and

dependability has become more crucial, increasingly

difficult and expensive. Moreover, the Modifiability of

applications and environments has substantially increased

in the last two couple of decades. Unluckily, the majority of

the software industries not only fails to deliver a quality

product to their customers, but in addition does not

recognize the appropriate quality attributes [8, 9, 21].

II. UNDERSTANDABILITY

Software understandability has always been an

indefinable idea and its exact valuation or assessment a

problematic exercise [11, 12, 14]. Most of the studies

measure Understandability or more precisely the attributes

that have impact on Understandability but at the source

code level. Though, Understandability estimation at the

source code level is a good indicator of effort Measurement,

it leads to the late arrival of information in the software

development procedure. A choice to change the design in

order to increase understandability after coding has started

might be very costly and error prone [10, 13]. While

estimating Understandability early in the development

process may greatly reduce the overall cost. This paper

provides a roadmap to industry personnel and study to

assess, and preferably, quantify software Understandability

in design phase [25, 26, 28]. A prescriptive framework has

been proposed in order to integrate Understandability

within the development life cycle. It may be used to point of

reference for software products according to their

Understandability.

Managing Object Oriented Software

Understandability: A Design Perspective

Dr. Abdullah, Teklay Teklu, Haftay Gebrezgabiher, Manoj Kumar

Managing Object Oriented Software Understandability: A Design Perspective

Copyright © 2020. Innovative Research Publication. All Rights Reserve 366

III. GENERIC GUIDELINES FOR MANAGING OBJECT

ORIENTED SOFTWARE UNDERSTANDABILITY

As a matter of fact, study and practitioners highly

recommend an efficient and accurate measure of software

Understandability early in design phase. There is a common

consensus among industry professionals and academicians

in integrating Understandability within the development

life cycle in order to deliver quality software. Unfortunately,

there is no standard methodology or guideline available to

quantify software Understandability [15, 17, 19, 22, 24].

Therefore, such a roadmap or framework, which can be

followed by industry personnel and study to quantify

Understandability early in design phase, appears highly

desirable and significant. A prescriptive framework as

depicted given below has been proposed to estimate

Understandability of object oriented software at design

level. The framework comprised of seven phases including

a common phase of ‘Design Review’. A brief description of

the framework components is given as follows.

IV. FRAMEWORK DEVELOPMENT

PREMISES:

A framework is a supposed explanation of a composite

process. It offers a realistic base for upcoming research

direction. The framework for Understandability Estimation

of object oriented design has the following assumptions:

 Understandability of an object oriented software

design is affected by several factors

 Understandability of OO design is affected by object

oriented design constructs.

 Understandability of an OO design is affected by

properties of an object oriented design.

 The framework estimate the Understandability by

controlling internal object oriented design properties

Fig 1: Understandability Estimation Framework

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552, Volume- 8, Issue- 5, September- 2020

https://doi.org/10.21276/ijircst.2020.8.5.6

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 367

A. CONCEPTUALIZATION

Software Understandability Estimation is an activity that

determines current Understandability by applying

statistical inference technique to failure data obtained

during system test or system operation [19, 27].

Understandability Estimation framework of an object

oriented design believes that estimation is a tool for

quantifying the effectiveness of any Estimation activity

[18]. Software Understandability estimation includes both

Estimation and prediction with the help of software

Understandability models [16]. The estimation framework

are called Understandability estimation framework.

V. OBJECT ORIENTED DESIGN CONSTRUCTS

Encapsulation is the mechanism to hide the internal

specification of an object and shows only the external

interface. Inheritance is an approach where an object

acquires the characteristics from another object by sharing

of attributes and operations among classes through their

hierarchical relationship [22]. The new classes of objects

that inherit much of their behavior from previously defined

classes [17, 26].The two more, most important design

constructs may be included, that have been generally used

in designing of the software that is coupling and Cohesion.

Coupling is the process to interact or communicate between

two objects by passing messages. It refers to the degree of

association from one object to another [15]. Cohesion is the

process to measures the degree of connectivity among the

elements of a single class or object [20]. It refers to the

degree, to which the methods in a class are related to each

other. The internal consistency occurs within the parts of

the design, and it is focused on data that is encapsulated

within an object and how the methods communicate with

data to provide well bounded behavior [15].

VI. OVERVIEW OF THE PROPOSED MODEL

Understandability is directly related to testability and

maintainability and continuously plays a significant role to

provide high class maintainable and testable software

within time and financial plan. It is one of the most

important concepts in design and testing of software

programs and components. It always supports for improved

software design at early stage of software development life

cycle that is to say at design phase that have positive impact

on the overall Understandability estimation cost and effort

[10, 14, 15]. We have established an understandability

estimation model that proves the estimation process of

software understandability design phase perspective. The

proposed model is shown in Figure 2. The model creates an

appropriate relationship between understandability and

object oriented design properties and the related metrics.

The values of these metrics can be effortlessly identified

with the help of class diagram. The quantifiable evaluation

of Understandability is very supportive to get

Understandability index of software design for low cost

Understandability estimation.

Fig 2: Mapping among Object Oriented Design Properties

and Understandability

A. MODEL DEVELOPMENT

In order to set up a model for Understandability, multiple

linear regression method has been used. Multivariate linear

model is specified below in Equation number (1) which is as

follows.

Y=a0+a1X1+a2X2+a3X3+-------+anXn Eq (1)

Where,

 Y is dependent variable.

 X1, X2, X3--------Xn (be independent variables)

associated to Y.

 a1, a2, a3--------an., are the coefficient of the

exacting independent variables.

 a0 is the intercept.

The data used for establishing Understandability model is

taken from Genero [27] that have been collected through

large commercial object oriented systems. The relationship

between Understandability and object oriented properties

has been established as depicted in Figure 2. As per the

mapping, Metrics ‘NC, MaxDIT, NAssoc, NA’ are selected

from [27] as independent variable to build up the

Understandability estimation model via SPSS, values of

coefficient are calculated in addition to Understandability

assessment model is formulated as specified below.

B. UNDERSTANDABILITY ESTIMATION

MODEL

In order to create a multivariate model for

Understandability of class diagram, metrics listed in

Genero, will play the role of independent variables whereas

Understandability will be in use as dependent variable.

Data used during the study has taken from Genero et al.

[27]. It contains Understandability data, collected through a

controlled experiment. It comprises a group of 28 class

diagrams (indicated as D0 to D27) and the metrics value of

every one diagram. Additionally, the mean value of the

expert’s score of understandability of these class diagrams

is also given and called as ‘Known Value’ in this paper.

Managing Object Oriented Software Understandability: A Design Perspective

Copyright © 2020. Innovative Research Publication. All Rights Reserve 368

Understandability = 1.133+ .235 x NC -.083 x MaxDIT

+ .032 x NAssoc +.002 x NA Eq. (2)

 Table 1: Coefficients values for Understandability estimation Model

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

95% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound

1 (Constant) 1.133 .350 3.239 .018 .277 1.989

Number_of_Class .235 .203 .911 1.157 .291 -.263 .733

Inheritance -.083 .388 -.085 -.213 .838 -1.031 .866

Coupling .032 .209 .076 .153 .884 -.479 .543

Cohesion .002 .068 .015 .027 .980 -.165 .169

a. Dependent Variable: Understandability

The model summary table 2 outcomes are best cooperative

when accomplishment multiple regressions. R is the

coefficients determinant that communicates us how

strongly

the multiple independent variables are related to the

dependent variable. R Square is highly helpful as it

contributes us the coefficient of determination.

Table 2: Understandability estimation Model Summary

Model Summary

Model R R

Square

Adjusted R

Square

Std. Error

of the

Estimate

Change Statistics

R Square

Change

F

Change

df1 df2 Sig. F

Change

1 .949a .900 .834 .48185 .900 13.574 4 6 .004

a. Predictors: (Constant), Cohesion, Inheritance, Coupling, Number_of_Class

Table 3: ANOVAb for Understandability estimation Model

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 12.607 4 3.152 13.574 .004a

Residual 1.393 6 .232

Total 14.000 10

a. Predictors: (Constant), Cohesion, Inheritance, Coupling, Number_of_Class

b. Dependent Variable: Understandability

VII. EXPERIMENTAL TRYOUT

Empirical justification is a dynamic phase of proposed

research work. Empirical justification is the normal

approach to justify the proposed model approval as well as

verification. In view of this actuality, practical

authentication of the Understandability model has been

done with sample tryouts. In order to validate developed

Understandability model the data has been taken from [10].

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552, Volume- 8, Issue- 5, September- 2020

https://doi.org/10.21276/ijircst.2020.8.5.6

 www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 369

Table 4: Understandability Ranking and their Relation

Projects

Understandability Understandability Ranking

d2

∑d2
rs rs> ±.781 Known

Value

Value achieved

using Model

Known

Rank

Rank achieved

using Model

P1 7.1 1.7 3 3 0

14

.915

P2 6.9 1.6 1 2 1

P3 8.1 1.9 9 7 4

P4 7.1 1.5 2 1 1

P5 8.5 2.0 10 9 1

P6 7.2 1.8 4 4 0

P7 7.4 1.9 5 6 1

P8 8.1 2.1 8 10 4

P9 7.8 2.0 7 8 1

P10 7.4 1.8 6 5 1

Speraman’s Coefficient of Correlation rs was used to check

the significance of correlation among calculated values of

Understandability using model and it’s ‘Known Values’.

The ‘rs’ was estimated using the method given as under:

Speraman’s Coefficient of Correlation

‘d’ = difference between ‘Calculated ranking’ and ‘Known

ranking’ of Understandability.

 n = Total number of ‘projects’ used in the

experimentation.

The correlation values between Understandability through

model and known ranking are shown in table (4) above.

Pairs of these values with correlation values rs above

[±.781] are checked in table. The associations are up to

standard with high degree of confidence, i.e. up to 99%.

Therefore we can conclude without any loss of generality

that Understandability Estimation model measures are

really reliable and significant and applicable.

‘d’ = difference between ‘Calculated ranking’ and ‘Known

ranking’ of Understandability.

 n = Total number of ‘projects’ used in the

experimentation.

The correlation values between Understandability through

model and known ranking are shown in table (4) above.

Pairs of these values with correlation values rs above

[±.781] are checked in table. The associations are up to

standard with high degree of confidence, i.e. up to 99%.

Therefore we can conclude without any loss of generality

that Understandability Estimation model measures are

really reliable and significant and applicable.

VIII. CONCLUSION

The framework proposed in this paper will address

understandability during software development life cycle. It

may help putting understandability benchmarking of

software projects. The framework is generic in nature, and

may be used by industry practitioners to estimate

understandability in order to make design decisions early in

the development life cycle. Strong theoretical basis

presented in the paper supports the claim of the

framework’s usability to estimate understandability of

object oriented software at design phase. This research

work shows the significance of understandability in general

and as a key attribute to software testability and

maintainability for creating high quality software within

time and budget. Understandability is clearly highly

appropriate and significant in the perspective of software

maintainability. Understandability model is developed with

the help of multiple linear regression method on object

oriented design properties. Statistical examination displays

that understandability model is statistically too much

significance and acceptable. Understandability estimation

model has been validated contextually tryout.

REFERENCES

[1] K. K. Aggarwal, Y. Singh, and J.K. Chhabra, “A

Fuzzy Model for Measurement of Software

Understandability”, International Symposium on

Performance Evaluation of Computer &

Telecommunication Systems, Montreal, Canada

(2003).

[2] W.N.Lo Bruce, S. Haifeng, “A Preliminary Testability

Model for Object-Oriented Software”, in Proceeding of

International Conference on Software Engineering,

Education, Practice, pp. 330- 337, IEEE (1998).

[3] J. Voas, Miller, “Improving the Software Development

Process using Testability Research”, pp. 114-121,

IEEE Software (1992).

[4] R.V. Binder, “Design for Testability in object-oriented

Systems”, Communications of the ACM. Vol. 37(9),

pp. 87-101 (1994).

[5] L. Zhao, “A new approach for software testability

analysis”, International Conference on Software

Engineering, Proceedings of the 28th International

Conference on Software Engineering, Shanghai, pp.

985–988, 2006.

Managing Object Oriented Software Understandability: A Design Perspective

Copyright © 2020. Innovative Research Publication. All Rights Reserve 370

[6] J. Gao, S. Ming-Chih, “A Component Testability

Model for Verification and Measurement”, In

Proceedings of the 29th Annual International

Computer Software and Applications Conference,

pages 211–218. IEEE Computer Society (2005).

[7] Dr, Reena Srivastava, and M. H. Khan. "Testability

Estimation of Object Oriented Design:

A Revisit". International Journal of Advanced

Research in Computer and Communication

Engineering, Vol. 2, Issue 8, pages 3086-3090, August

2013.

[8] G. Jimenez, S. Taj, and J. Weaver, “Design for

Testability” in the Proceedings of the 9th Annual

NCIIA Conference, 2005.

[9] S. Jungmayr, “Testability during Design”,

SoftwaretechnikTrends, Proceedings of the GI

Working Group Test, Analysis and Verification of

Software, Potsdam, pp. 10-11, 2002.

[10] Abdullah, Dr, Reena Srivastava, and M. H. Khan.

“Modifiability: A Key Factor To Testability”,

International Journal of Advanced Information

Science and Technology, Vol. 26, No.26, Pages 62-

71 June 2014. (IJCSIT), Vol. 7, No 1, February 2015,

DOI: 10.5121/ijcsit.2015.7115.

[11] S. Jungmayr, “Reviewing Software Artifacts for

Testability”, EuroSTAR’99, Barcelona, Spain, 1999.

[12] I. Sommerville, Software Engineering, 5th Edition,

Addison Wesley, 1996.

[13] R. A. Khan, K. Mustafa, I Ahson, “An Empirical

Validation of Object Oriented Design Quality Metrics,

Journal King Saud University, Computer &

Information Science, Vol. 19, pp. 1-16, Riyadh

(1427H/2007).

[14] Abdullah, Dr, M. H. Khan, and Reena Srivastava.

“Testability Measurement Model for Object

Oriented Design (TMMOOD)”. International Journal

of Computer Science & Information

Technology (IJCSIT), Vol. 7, No 1, February 2015,

DOI: 10.5121/ijcsit.2015.7115.

[15] M. Genero, J. Olivas, M. Piattini and F. Romero, “A

Controlled Experiment for Corroborating the

Usefulness of Class Diagram Metrics at the early

phases of Object Oriented Developments”,

Proceedings of ADIS 2001, Workshop on decision

support in Software Engineering, 2001.

[16] T. DeMarco, Controlling Software Projects,

Englewood Cliffs, NJ, Yourdon Press, 1982.

[17] C. Valdaliso, O. Eljabiri, F.P. Deek, “Factors

Influencing Design Quality and Assurance in Software

Development: An Empirical Study”, Electronic

Proceedings of the First International Workshop on

Model-based Requirements Engineering (MBRE 01),

San Diego, California, 2001.

[18] Dr. Abdullah, Dr. Mahfuzul Huda, Hagos Yirgaw, “A

Methodology to Evaluate Extensibility of Object

Oriented Design: A Product Transition Perspective”.

International Journal of Advanced Research in

Computer and Communication Engineering Vol. 8,

Issue 10, October 2019. DOI

10.17148/IJARCCE.2019.81001

[19] B. Jacob, L. Niklas, P. Waldermarsson, “Relative

Indicators for Success in software development”,

Deprtment of Communication Systems, Lund

University, 2001.

[20] Abdullah, Dr, Reena Srivastava, and M. H. Khan.

"Testability Measurement Framework: Design

Phase Perspective”. International Journal of Advanced

Research in Computer and Communication

Engineering, Vol. 3, Issue 11, Pages 8573- 8576

November 2014.

[21] Ramesh Kumar , Dr. Abdullah, Abhishek Yadav

(2020) Measuring Maintainability of Object Oriented

Design: A Revisit IJIRCST Vol-8 Issue-5 Page

No-354-360, DOI: 10.21276/ijircst.2020.8.5.4 DOI

URL: https://doi.org/10.21276/ijircst.2020.8.5.4

[22] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A

Measurement Framework for object-oriented Software

Testability, Information and Software Technology,

Canada , Vol. 47, Issue 15, pp. 9 7 9‐ 9 97 , 2005.

[23] E. Mulo, “Design for Testability in Software Systems”,

Department of Software Technology, Faculty EEMCS,

Delft University of Technology, Netherlands, 2007.

[24] Abdullah, Dr, M. H. Khan, and Reena Srivastava.

“Flexibility: A Key Factor To Testability”,

International Journal of Software Engineering &

Applications (IJSEA), Vol.6, No.1, January 2015.

DOI: 10.5121/ijsea.2015.6108.

[25] R. Marinescu, “Measurement and Quality in

Object‐Oriented Design”, Faculty of Automatics and

Computer Science, University of Timisoara, 2002.

[26] Dr. Abdullah1 and Dr. Mahfuzul Huda, “Empirically

Validated Simplicity Evaluation Model For Object

Oriented Software”. International Journal of Software

Engineering & Applications (IJSEA), Vol.9, No.6,

November 2018. DOI:10.5121/ijsea.2018.9606

[27] M. Genero, E. Manso, and G. Cantone, “Building

UML Class Diagram Maintainability Prediction

Models Based on Early Metrics,” Proc. 9th

International Symposium on Software Metrics

(METRICS'03), 3 - 5 Sept., 2003, pp. 263 - 275, 2003.

[28] S. Jungmayr, “Identifying Test‐Critical

Dependencies,” in the P ro c e e d i n g s , IEEE

International Conference on Software Maintenance,

pp. 404‐413, 2002

