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ABSTRACT- The purpose of this paper is to explore the 

possibility of evaluating SPARQL queries containing 

probabilities using linear algebraic methods and techniques. 

This approach has many important advantages, such as 

simplicity, succinctness, elegance and greater familiarity to 

a wide base of practitioners. On the other hand, there are 

questions regarding its efficiency in view of the huge 

datasets of the current era. In this paper, we advocate that in 

the case of sparse RDF graphs we can resort to sparse 

matrices for computing complicated probabilistic queries. It 

is demonstrated that via probabilistic sparse matrices one 

can evaluate specific types of queries involving transitive 

predicates, which are of great practical importance. The 

algorithm and data structures that are currently available for 

handling sparse matrices promise improved performance in 

pragmatic situations, which constitutes this line of approach 

particularly promising.  

 
KEYWORDS- RDF graph, SPARQL query, probabilistic 

SPARQL query, sparse matrices, probabilistic matrices.  

I. INTRODUCTION 

Today most aspects of everyday life activities have 

something to do with the Web. It would not be an 

exaggeration to claim that research about the Web and the 

related state of the art technologies dominates the field of 

Computer Science. The enormous and often chaotic 

information distributed all over the internet must be stored 

and processed as efficiently as possible. The storage part is 

taken care of by the Linked Open Data [17] and the 

Resource Description Framework (RDF) [23]. Retrieving 

the information contained in the, usually enormous, datasets 

is typically achieved by the specialized query language 

SPARQL [28].  

From a technical viewpoint, RDF datasets can be 

modeled as directed graphs. In the present era, the size of 

these graphs is typically huge. This fact presents many 

algorithmic challenges and, at the same time, is the source 

of innovative research. Simplicity is perhaps the best, if not  
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the only, way to tackle gigantic datasets. This is the main 

purpose behind the syntax of triples, which is adopted by 

the RDF standard: , where ,  and  stand for 

subject, predicate and object, respectively. The meaning of 

the triples is that the subjects are connected to the objects 

via the relations expressed by the predicates.  

On should be aware however that in many occasions the 

facts stored in the dataset may be inaccurate, or even 

completely false. In a grey world, it is not always possible 

to express absolute truth in triples. Simply put, the truth of 

the RDF triples maybe uncertain, or, more accurately, 

certain up to a degree of probability. Therefore, it has been 

suggested by many researchers that it could prove useful to 

associate to each triple a numerical value in the interval 

. This numerical value may be called in various 

contexts probability, or degree of confidence, or extent of 

certainty. Irrespective of the term used, the idea is the same: 

it is not absolutely certain that the triple in question is true. 

There is some ambivalence, the measure of which is 

reflected by the numerical value. Such datasets are rather 

common and a characteristic example is that of biological 

data [13]. The present paper examines under what 

circumstances it may be possible to make inferences in the 

presence of incomplete or ambivalent information.  

SPARQL is the most prominent query language for RDF 

datasets. The feature of SPARQL that will be of most use in 

this study is its ability to handle path queries. Using path 

queries on can capture paths in the underlying RDF graph. 

For this endeavor to be meaningful, it is necessary for the 

RDF graph to contain at least one transitive predicate. An 

RDF predicate  is transitive, if it satisfies the transitive 

property, that is  can be inferred from  and 

. Traversing consecutive edges labeled by  

amounts to traversing a path, which is called for brevity 

-path, in the RDF graph.  

A. Overview of previous work 

Let us now briefly mention a few important papers that 

bear some relevance to this work.  

The authors in [30] considered path queries formed by 

context-free grammars. It is a well-known theoretical fact 

that context-free grammars are more expressive than 

regular expressions. Motivated by this fact, the authors 

designed the query language cfSPARQL. This language is a 

strictly more powerful extension of SPARQL and, as such, 
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it provides mechanisms to write queries that cannot be 

formulated in standard SPARQL. An attempt to classify 

SPARQL queries from an algebraic viewpoint was made in 

[26]. This led to the characterization of queries in terms of 

equivalence classes. In the same vein, [1] proposed and 

examined another concept of equivalence, which produced 

different families of similar queries. The researchers in [25] 

made insightful connections between queries and automata, 

that demonstrated the feasibility of formulating queries via 

automata-theoretic means. Another interesting association 

of queries on Linked Data and Path Queries to Büchi 

automata and ω-automata was established in the works of 

[9] and [10]. Similarly, the possibility of query evaluation 

via automata was explored in [29]. The study of the 

feasibility of inclusion of extra temporal information and 

the resulting enhanced expressive power was undertaken in 

[31], [4] and [5] using different approaches.  

Although initially met with skepticism, particularly in 

view of the question of practical efficiency, the idea of 

adding probabilities to RDF triples has by now attained 

substantial recognition. This would lead to a more accurate 

reflection of the situation by the explicit facts contained in 

the dataset, and would also allow the expression and 

evaluation of probabilistic queries. A great deal of research 

has been conducted towards this direction, from theoretical 

guidelines in [24] to more practical considerations. The 

researchers in [13] pioneered an extension of SPARQL with 

the aim of handling queries on probabilistic RDF graphs. A 

study of probabilistic ontologies together with techniques 

for answering related queries was presented in [27]. 

Uncertainty in path queries was discussed in [12], while 

[16] undertook the task of augmenting RDF triples with 

probabilities. A good source for further reading is also 

reference [14].  

An important step was also the introduction of 

pSPARQL in [8] and its subsequent extension in [7]. 

Standard SPARQL is a proper subset of pSPARQL, which 

is geared towards formulation of probabilistic queries. The 

idea that probabilistic queries can be handled via the use of 

suitable complex matrices is proposed and explained in [2]. 

There it was remarked that often unconventional 

techniques, inspired by the field of quantum computing, can 

provide an edge over classical methods, as was elaborated 

in references [18], 19], and [20]. It has also been 

demonstrated that probabilistic automata can be utilized in 

answering probabilistic queries in [3].  

The contribution of this paper is the proposal of sparse 

matrices as a useful and efficient method for computing 

complicated probabilistic queries on sparse RDF graphs. It 

is shown here that, in principle, the use of probabilistic 

sparse matrices can make practically possible the fast 

computation of certain important categories of queries 

involving transitive predicates. This method can further be 

augmented with ad hoc criteria, which make assessments in 

terms of the current probability value attributed to a triple. 

Successive multiplication of probabilistic matrices tends to 

rapidly lower the probability values contained in the 

resulting matrices or vectors. Probabilities close to zero 

suggest improbability rather than probability, thus, it may 

be expedient to regard the corresponding inferred triple as 

false or nonexistent. Irrespective of the adoption or not of 

such ad hoc heuristics, the algorithm and data structures 

currently employed for handling sparse matrices can 

guarantee very satisfactory performance in real life 

situations.  

II. BACKGROUND 

This section contains the definitions and the notation 

used in the rest of the paper. We assume that we are dealing 

with sparse probabilistic RDF graphs, that is, the graphs are 

sparse and to each triple  corresponds a real number 

in the interval , which quantifies the degree of 

certainty of the particular fact.  

Definition 1. Suppose we are given the column vector 

, where  (  is the 

transpose of ). We say that  is stochastic, if  

and , and  is substochastic, if  and 

. Similarly, a square matrix  is 

stochastic, if all its columns are stochastic and substochastic 

if all its columns are substochastic.  

Definition 2. Given a sparse RDF graph, let  be a 

transitive predicate appearing in the graph. Let us further 

assume that the vertices that are incident to arcs labeled by 

 are . We construct the  matrix  whose 

elements  are defined as follows:  

 
Definition 3. We may define a real number , 

which we call threshold, such that whenever the probability 

 corresponding to an inferred triple is below the threshold, 

this triple is considered improbable and is dismissed. 

Practically, this means that in the corresponding matrix 

entry  becomes 0.  

Sparse RDF graphs are common. Some authors suggest 

that in real life scenarios most large matrices are sparse [33]. 

Hence, it is undeniably useful to consider the case of sparse 

RDF graphs. Today there exist highly efficient data 

structures for the representation of sparse matrices. It is 

worth pointing out that the dominant operation may affect 

the choice of the underlying data structure. Taking into 

account that the sparse RDF graph is represented by a 

sparse matrix and the nodes of this graph are also 

conveniently represented by (column) vectors, suggests that 

the two main operations are matrix vector multiplication 

and matrix matrix multiplication. For these operations, 

using appropriate storage schemes, such as Compressed 

Sparse Row, or Compressed Sparse Column, can lead to 

substantial performance gains compared to the standard 

methods of numerical analysis (see [22] and [11]). For 

instance, in the case of matrix vector multiplication, it is 

possible to achieve time linear in the size of the nonzero 

elements of the sparse matrix. For more details, the 

interested reader may consult [6], [21], [32] and [34].  

III. MAIN RESULTS 

Simple standard SPARQL queries can retrieve 

information that is explicitly stored in the dataset. Since 

SPARQL 1.1 [28], it has become possible to make use of its 

enhanced navigational capacity using transitive predicates. 
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In this manner, it is possible to retrieve implicitly stored 
information from the dataset, as long as this information can 

be acquired by traversing a path with edges labeled by one 

or more transitive predicates. In a probabilistic setting, in 

addition to the path characteristics, we must compute the 

likelihood of the information being true. Establishing that 

node  is related to node  by a -path, i.e., a path labeled 

by the transitive predicate  is not the end of the story. The 
degree of certainty of this fact must be calculated, so that we 

may assess if the inferred fact is very probable or highly 

unlikely.  

Definition 4. We say that queries of the following form 

are simple one-source queries.  

 

SELECT ?d  

WHERE {  

 s T+ ?d .  

}  

Simple one-source query.  

 

This type of query is formulated in order to retrieve all 

nodes that are reachable via a -path from a specific source 

node designated by . The aforementioned path has length 

at least  and its edges are exclusively labeled by the 

transitive predicate .  

Queries of the next form are simple one-destination 

queries.  

 

SELECT ?s  

WHERE {  
 ?s T+ d .  

}  

Simple one-destination query.  

 

A query such as the above will return those source nodes 

from which emanate -paths (of length at least ) that end 

up at the destination node called .  

Similarly, we may designate simple many sources - many 

destinations queries. 

 

SELECT ?s ?d  

WHERE {  

 ?s T+ v .  

 v T+ ?d .  

}  

Simple many sources - many destinations query.  

 

This kind of query fixes a specific node, which is called 

node , and collects pairs of initial and the terminal nodes 

that define paths passing through node . Specifically, the 

first coordinate of the pair is the initial source node from 

which the path begins and the second coordinate of the pair 

is the terminal node of the path. The path itself must consist 

of two sub-paths: the first from the initial node to node , 

and the second from node  to the terminal node. Both 

paths are -paths of length at least .  

Queries involving more than one transitive predicates are 

called composite queries. Using two or more transitive 

predicates we may define composite one-source queries 

with the following general form.  

 

SELECT ?d  

WHERE {  

 s T1+ ?x .  

 ?x T2+ ?d . 

}  

Composite one-source query.  

 

Queries such as the above are composite one-source 

queries. They can be generalized even further by the 

inclusion of more than two transitive predicates, i.e., , , 

and so on. This query will retrieve all nodes that are 

reachable via a composite path from a specific source node 

denoted by . The path is characterized as composite in the 

sense that it is the concatenation of two different paths, each 

of length at least . The first path is a -path, meaning that 

the arcs are labeled by predicate  and the second path is a 

-path, i.e., the arcs are labeled by predicate .  

 Analogously, we have composite one-destination and 

composite many sources - many destinations queries.  

 

SELECT ?s  

WHERE {  

 ?s T1+ ?x .  

 ?x T2+ d . 

}  

Composite one-destination query.  

 

The previous query will return all nodes from which a 

composite path, ending at a specific destination node 

denoted by , originates. In this case too the path is 

considered to be composite because it is the concatenation 

of two different paths, each of length at least . The first 

path is a -path, meaning that the arcs are labeled by 

predicate  and the second path is a -path, i.e., the arcs 

are labeled by predicate .  

 

SELECT ?s ?d  

WHERE {  

 ?s T1+ v .  

 v T2+ ?d . 

}  

Composite many sources - many destinations query.  

 

The above query has arguably the most complicated 

form. It will retrieve pairs of nodes, the first node playing 

the role of source, and the second node playing the role of 

destination. Every pair of source and destination nodes 

defines a composite path passing through a designated node 
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. The path in question is composite, as it consists of two 

smaller paths (of length at least ). The first is a -path, 

and the second is a -path.  

Common characteristics to all the previous classes of 

queries is the specification of a path or paths via the 

operator + combined with the transitive predicate or 

predicates (see [15]). The number of types of paths depends 

on the number of different transitive predicates that appear 

in the query. In the case of simple queries we encounter just 

one type of path, whereas in the case of composite queries 

we encounter at least two types of paths. In all cases that 

paths have length at least , as this is a consequence of the 

application of + operator.  

The above classes of queries are of obvious practical 

importance, as they enable the synthesis and retrieval of 

path properties from the underlying dataset. Moreover, they 

can serve as a basis for the definition of more complicated 

queries, in many different ways, i.e., containing more 

predicates or resulting from the conjunction of previously 

defined queries.  

Let us now recall that we have assumed an (implicit) 

ordering  of the vertices incident to each transitive 

predicate . This will be useful in the formulation of the 

vectors and matrices that will be required during the 

computation process.  

Definition 5. In the present linear algebraic setting, the 

vertices can be represented by unit  dimensional column 

vectors using the following simple mapping:  

 
Definition 6. Given a column vector , the set of indices 

of the nonzero elements of  are denoted by .  

The construction outlined in Definition 2 will produce 

the  matrix . Ideally, this matrix should be stochastic. 

It may, however, be more realistic to expect  to be 

substochastic. We shall argue that in the case of sparse 

matrices it is practically feasible to evaluate queries of the 

classes summarized in Definition 4, which constitute an 

important and useful subset of SPARQL queries. 

Computing these queries involves probabilistic  matrices, 

one for each transitive predicate appearing in the query. In 

theory at least, it will require the computation of powers of 

the matrix , i.e.,  for some  The following 

Proposition 1, whose proof is trivial and is omitted, presents 

a well-known fact regarding such matrices. 

Proposition 1. Consider the  matrix , as in 

Definition 2. Let  be the  power of , , and let 

 be its elements. The elements  provide 

information about paths of length  from node  to node  

in the original RDF graph. Specifically, if , then 

there is no path of length  from  to . Otherwise, if 

, for some real number , then there exists a 

path of length  from  to  with probability .     

  

In the above Proposition 1, when we refer to paths of 

length , we mean paths of length  where all arcs are 

labeled by the transitive predicate . Sometimes to 

emphasize this fact we call them -paths. Perhaps it is 
worth pointing out that the existence or not of a path of 

length  neither implies, nor precludes the existence of a 

path of length . Another issue that may come into 
play is the application or not of the threshold. The 

probability assigned to the path is the measure of the 

certainty about the existence of the path. If the probability is 

very low then the path probably does not exist. According to 

the precision constraints at hand, it might be advantageous 

to view probabilities lower than a threshold as zero, thus 

ignoring the corresponding matrix element. This will 

increase the sparsity of the matrix and make even more 

efficient its subsequent use. The existence of a -path from 

 to  with assigned probability , is equivalent to the 

inference of  the triple  with degree of certainty .  

A. Computing simple one-source queries 

Simple one-source queries are easy to compute in 

principle. Let  be the vector representation of 

source vertex .  

Invoking Proposition 1 and using a simple induction on 

, it is straightforward to show the following Proposition.  

Proposition 2. Given a simple one-source query 

involving the transitive predicate  and the source node , 

the destinations at distance , from node  are 

given by the nonzero entries of vector , where:  

 
The set of destination nodes, at any distance from , is 

given by , where:  

 
We note that the above set  also contains the nodes 

adjacent to .                 

In the case of a sparse matrix , it is more efficient to 

compute this vector by successive matrix vector 

multiplications, i.e., , , …,  and . 

First, the multiplication of a vector by a sparse matrix 

requires time linear in the number of nonzero elements of 

the matrix. Second, it may happen that some entries in a 

vector appearing in this sequence of computations are 

below the threshold. In this case, they can be simply 

regarded as zeros, which will facilitate even more the 

remaining calculations.  

B. Computing simple one-destination queries 

Symmetrically, one can easily compute simple 

one-destination queries. If  is the vector representation of 

destination vertex , then by Proposition 1 and a simple 

induction on , it can be proved that:  

Proposition 3. Given a simple one-destination query 

involving the transitive predicate  and the destination node 
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, the sources at distance , from node  are given 

by the nonzero entries of vector , where:  

 
The set of source nodes, at any distance from , is given 

by , where:  

 
We note again that the set  contains the nodes 

adjacent to .                 

It is important here to emphasize that , which is the 

transpose of matrix , must be used. The previous remarks 

regarding the efficiency of the matrix vector multiplication 

for sparse matrices, also apply in this case.  

C. Computing simple many sources - many destinations 

queries 

Simple many sources - many destinations queries return 

ordered pairs  of nodes such that there is a path from  

to a specific node  and a path from  to . The paths have 

length at least . If  is the vector representation of vertex 

, then by combining together Propositions 2 and 3, we 

derive the next proposition 4.  

Proposition 4. Given a simple many sources - many 

destinations query involving the transitive predicate  and 

the intermediate node , the source nodes at distance 

, from node  are given by the nonzero entries 

of vector , and the destination nodes at 

distance , from node  are given by the nonzero 

entries of vector . Hence, the ordered pairs 

 of nodes such that there is a path of length at least  

from  to  and a path of length at least  from  to , is 

given by:  

 
This set of pairs contains all the pairs of nodes that are 

adjacent                   

D.  Computing composite one-source queries 

When answering composite queries, the major difference 

compared to the previous cases of simple queries is the 

presence of two or more transitive predicates. This, in turn, 

causes the inclusion of two or more (substochastic)  

matrices  .  

In the case of composite one-source queries, as the one 

shown in Definition 4, we can state the following 

Proposition 5, which is a generalization of Proposition 2.  

Proposition 5. Given a composite one-source query 

involving the transitive predicates , , and the source 

node , the nodes reachable from  via a -path of length 

, and a -path of length , are given 

by the nonzero entries of vector , where:  

 
The set of destination nodes through a -path and a 

-path, at any distance from , is given by , where:  

 
We note that the above set  also contains the nodes 

adjacent to .                 

E. Computing composite one-destination queries 

Composite one-destination queries, the general form of 

which is shown in Definition 4, involve at least two 

transitive predicates. Consequently, their computation must 

make use of an equal number of  matrices, one for 

each predicate. The details of their computation is given in 

the next Proposition 6, which can also be viewed as a 

generalization of Proposition 3.  

Proposition 6. Given a composite one-destination query 

involving the transitive predicates , , and the 

destination node , the source nodes from which  is 

reachable via a -path of length , and a -path 

of length , are given by the nonzero entries of 

vector , where:  

 
The set of source nodes from which originates a -path 

followed by a -path that eventually terminates at node , 

is given by , where:  

 
We note that the above set  also contains the nodes 

adjacent to .                 

F. Computing composite many sources - many 

destinations queries 

The composite many sources - many destinations case 

can be tackled in a similar way as the previous composite 

cases. Proposition 7 that is stated next contains the details 

and generalizes Proposition 4.  

Proposition 7. Suppose we are given a composite many 

sources - many destinations query involving the transitive 

predicates , , and the intermediate node . The nodes 

from which a -path of length , to  emanates 

are given by the entries of . 

Symmetrically, the nodes to which a -path of length 

, from  terminates are given by the entries of 

. The required ordered pairs  of nodes 

such that a path of length at least  originates from  and 

ends at  and a path of length at least  starts from  and 

ends at , are given by:  

 
The above set of pairs will also return all the pairs of 

adjacent nodes to                

Answering queries that are more complex, involving 

more than two predicates, can be accomplished by 

straightforward generalizations of the above Propositions 5 

- 7.  



                                                                                

On the Feasibility of Handling Uncertainty in SPARQL Queries in the Case Of Sparse Graphs 

Copyright © 2020. Innovative Research Publication. All Rights Reserve 401 
 

 

IV. CONCLUSION 

In this paper, we have investigated the evaluation of 

certain practically important classes of probabilistic queries 

involving transitive predicates and paths. The ability to 

retrieve enhanced navigational information is a useful 

feature that offers concrete advantages to the practitioner. 

Moreover, in many environments where uncertainty is 

inherently present, the capability to reason about 

probabilities, particular when assessing inferred facts is 

indispensable. For these types of queries, we have shown 

how they can be computed using linear algebraic methods, 

and, specifically, appropriate matrix vector multiplications. 

When the matrices involved are dense, this approach is 

probably not very promising. Things are radically different 

when the matrices involved, that is the matrices 

corresponding to the transitive predicates, are sparse. Then 

this method becomes efficient. Taking advantage of state of 

the art data structures and techniques for sparse matrices, 

e.g., Compressed Sparse Row or Compressed Sparse 

Column, it is possible the perform the multiplication of the 

sparse matrix with the vector in time that is linear in the 

number of the nonzero elements of the matrix. The situation 

can be further improved by employing a threshold. The 

main idea behind the introduction of a threshold is very 

simple: any probability value below the threshold signifies 

some that very improbable. Therefore, by systematically 

comparing the probabilities that arise during the 

computational process with the threshold, and taking as 

zero those that are below the threshold, we reduce the 

overall number of the nonzero elements, which speads up 

the performance of this method.  
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