

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552 Volume- 8, Issue- 6, November 2020

https://doi.org/10.21276/ijircst.2020.8.6.5

www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 396

ABSTRACT- The purpose of this paper is to explore the

possibility of evaluating SPARQL queries containing

probabilities using linear algebraic methods and techniques.

This approach has many important advantages, such as

simplicity, succinctness, elegance and greater familiarity to

a wide base of practitioners. On the other hand, there are

questions regarding its efficiency in view of the huge

datasets of the current era. In this paper, we advocate that in

the case of sparse RDF graphs we can resort to sparse

matrices for computing complicated probabilistic queries. It

is demonstrated that via probabilistic sparse matrices one

can evaluate specific types of queries involving transitive

predicates, which are of great practical importance. The

algorithm and data structures that are currently available for

handling sparse matrices promise improved performance in

pragmatic situations, which constitutes this line of approach

particularly promising.

KEYWORDS- RDF graph, SPARQL query, probabilistic

SPARQL query, sparse matrices, probabilistic matrices.

I. INTRODUCTION

Today most aspects of everyday life activities have

something to do with the Web. It would not be an

exaggeration to claim that research about the Web and the

related state of the art technologies dominates the field of

Computer Science. The enormous and often chaotic

information distributed all over the internet must be stored

and processed as efficiently as possible. The storage part is

taken care of by the Linked Open Data [17] and the

Resource Description Framework (RDF) [23]. Retrieving

the information contained in the, usually enormous, datasets

is typically achieved by the specialized query language

SPARQL [28].

From a technical viewpoint, RDF datasets can be

modeled as directed graphs. In the present era, the size of

these graphs is typically huge. This fact presents many

algorithmic challenges and, at the same time, is the source

of innovative research. Simplicity is perhaps the best, if not

Manuscript Received November 20, 2020

Theodore Andronikos, Associate Professor,

Department of Informatics, Ionian University, 7 Tsirigoti

Square, Corfu, Greece, (e-mail: andronikos@ionio.gr)

the only, way to tackle gigantic datasets. This is the main

purpose behind the syntax of triples, which is adopted by

the RDF standard: , where , and stand for

subject, predicate and object, respectively. The meaning of

the triples is that the subjects are connected to the objects

via the relations expressed by the predicates.

On should be aware however that in many occasions the

facts stored in the dataset may be inaccurate, or even

completely false. In a grey world, it is not always possible

to express absolute truth in triples. Simply put, the truth of

the RDF triples maybe uncertain, or, more accurately,

certain up to a degree of probability. Therefore, it has been

suggested by many researchers that it could prove useful to

associate to each triple a numerical value in the interval

. This numerical value may be called in various

contexts probability, or degree of confidence, or extent of

certainty. Irrespective of the term used, the idea is the same:

it is not absolutely certain that the triple in question is true.

There is some ambivalence, the measure of which is

reflected by the numerical value. Such datasets are rather

common and a characteristic example is that of biological

data [13]. The present paper examines under what

circumstances it may be possible to make inferences in the

presence of incomplete or ambivalent information.

SPARQL is the most prominent query language for RDF

datasets. The feature of SPARQL that will be of most use in

this study is its ability to handle path queries. Using path

queries on can capture paths in the underlying RDF graph.

For this endeavor to be meaningful, it is necessary for the

RDF graph to contain at least one transitive predicate. An

RDF predicate is transitive, if it satisfies the transitive

property, that is can be inferred from and

. Traversing consecutive edges labeled by

amounts to traversing a path, which is called for brevity

-path, in the RDF graph.

A. Overview of previous work

Let us now briefly mention a few important papers that

bear some relevance to this work.

The authors in [30] considered path queries formed by

context-free grammars. It is a well-known theoretical fact

that context-free grammars are more expressive than

regular expressions. Motivated by this fact, the authors

designed the query language cfSPARQL. This language is a

strictly more powerful extension of SPARQL and, as such,

On the Feasibility of Handling Uncertainty

in SPARQL Queries in the Case of Sparse

Graphs

Theodore Andronikos

mailto:andronikos@ionio.gr

On the Feasibility of Handling Uncertainty in SPARQL Queries in the Case Of Sparse Graphs

Copyright © 2020. Innovative Research Publication. All Rights Reserve 397

it provides mechanisms to write queries that cannot be

formulated in standard SPARQL. An attempt to classify

SPARQL queries from an algebraic viewpoint was made in

[26]. This led to the characterization of queries in terms of

equivalence classes. In the same vein, [1] proposed and

examined another concept of equivalence, which produced

different families of similar queries. The researchers in [25]

made insightful connections between queries and automata,

that demonstrated the feasibility of formulating queries via

automata-theoretic means. Another interesting association

of queries on Linked Data and Path Queries to Büchi

automata and ω-automata was established in the works of

[9] and [10]. Similarly, the possibility of query evaluation

via automata was explored in [29]. The study of the

feasibility of inclusion of extra temporal information and

the resulting enhanced expressive power was undertaken in

[31], [4] and [5] using different approaches.

Although initially met with skepticism, particularly in

view of the question of practical efficiency, the idea of

adding probabilities to RDF triples has by now attained

substantial recognition. This would lead to a more accurate

reflection of the situation by the explicit facts contained in

the dataset, and would also allow the expression and

evaluation of probabilistic queries. A great deal of research

has been conducted towards this direction, from theoretical

guidelines in [24] to more practical considerations. The

researchers in [13] pioneered an extension of SPARQL with

the aim of handling queries on probabilistic RDF graphs. A

study of probabilistic ontologies together with techniques

for answering related queries was presented in [27].

Uncertainty in path queries was discussed in [12], while

[16] undertook the task of augmenting RDF triples with

probabilities. A good source for further reading is also

reference [14].

An important step was also the introduction of

pSPARQL in [8] and its subsequent extension in [7].

Standard SPARQL is a proper subset of pSPARQL, which

is geared towards formulation of probabilistic queries. The

idea that probabilistic queries can be handled via the use of

suitable complex matrices is proposed and explained in [2].

There it was remarked that often unconventional

techniques, inspired by the field of quantum computing, can

provide an edge over classical methods, as was elaborated

in references [18], 19], and [20]. It has also been

demonstrated that probabilistic automata can be utilized in

answering probabilistic queries in [3].

The contribution of this paper is the proposal of sparse

matrices as a useful and efficient method for computing

complicated probabilistic queries on sparse RDF graphs. It

is shown here that, in principle, the use of probabilistic

sparse matrices can make practically possible the fast

computation of certain important categories of queries

involving transitive predicates. This method can further be

augmented with ad hoc criteria, which make assessments in

terms of the current probability value attributed to a triple.

Successive multiplication of probabilistic matrices tends to

rapidly lower the probability values contained in the

resulting matrices or vectors. Probabilities close to zero

suggest improbability rather than probability, thus, it may

be expedient to regard the corresponding inferred triple as

false or nonexistent. Irrespective of the adoption or not of

such ad hoc heuristics, the algorithm and data structures

currently employed for handling sparse matrices can

guarantee very satisfactory performance in real life

situations.

II. BACKGROUND

This section contains the definitions and the notation

used in the rest of the paper. We assume that we are dealing

with sparse probabilistic RDF graphs, that is, the graphs are

sparse and to each triple corresponds a real number

in the interval , which quantifies the degree of

certainty of the particular fact.

Definition 1. Suppose we are given the column vector

, where (is the

transpose of). We say that is stochastic, if

and , and is substochastic, if and

. Similarly, a square matrix is

stochastic, if all its columns are stochastic and substochastic

if all its columns are substochastic.

Definition 2. Given a sparse RDF graph, let be a

transitive predicate appearing in the graph. Let us further

assume that the vertices that are incident to arcs labeled by

 are . We construct the matrix whose

elements are defined as follows:

Definition 3. We may define a real number ,

which we call threshold, such that whenever the probability

 corresponding to an inferred triple is below the threshold,

this triple is considered improbable and is dismissed.

Practically, this means that in the corresponding matrix

entry becomes 0.

Sparse RDF graphs are common. Some authors suggest

that in real life scenarios most large matrices are sparse [33].

Hence, it is undeniably useful to consider the case of sparse

RDF graphs. Today there exist highly efficient data

structures for the representation of sparse matrices. It is

worth pointing out that the dominant operation may affect

the choice of the underlying data structure. Taking into

account that the sparse RDF graph is represented by a

sparse matrix and the nodes of this graph are also

conveniently represented by (column) vectors, suggests that

the two main operations are matrix vector multiplication

and matrix matrix multiplication. For these operations,

using appropriate storage schemes, such as Compressed

Sparse Row, or Compressed Sparse Column, can lead to

substantial performance gains compared to the standard

methods of numerical analysis (see [22] and [11]). For

instance, in the case of matrix vector multiplication, it is

possible to achieve time linear in the size of the nonzero

elements of the sparse matrix. For more details, the

interested reader may consult [6], [21], [32] and [34].

III. MAIN RESULTS

Simple standard SPARQL queries can retrieve

information that is explicitly stored in the dataset. Since

SPARQL 1.1 [28], it has become possible to make use of its

enhanced navigational capacity using transitive predicates.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552 Volume- 8, Issue- 6, November 2020

https://doi.org/10.21276/ijircst.2020.8.6.5

www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 398

In this manner, it is possible to retrieve implicitly stored
information from the dataset, as long as this information can

be acquired by traversing a path with edges labeled by one

or more transitive predicates. In a probabilistic setting, in

addition to the path characteristics, we must compute the

likelihood of the information being true. Establishing that

node is related to node by a -path, i.e., a path labeled

by the transitive predicate is not the end of the story. The
degree of certainty of this fact must be calculated, so that we

may assess if the inferred fact is very probable or highly

unlikely.

Definition 4. We say that queries of the following form

are simple one-source queries.

SELECT ?d

WHERE {

 s T+ ?d .

}

Simple one-source query.

This type of query is formulated in order to retrieve all

nodes that are reachable via a -path from a specific source

node designated by . The aforementioned path has length

at least and its edges are exclusively labeled by the

transitive predicate .

Queries of the next form are simple one-destination

queries.

SELECT ?s

WHERE {
 ?s T+ d .

}

Simple one-destination query.

A query such as the above will return those source nodes

from which emanate -paths (of length at least) that end

up at the destination node called .

Similarly, we may designate simple many sources - many

destinations queries.

SELECT ?s ?d

WHERE {

 ?s T+ v .

 v T+ ?d .

}

Simple many sources - many destinations query.

This kind of query fixes a specific node, which is called

node , and collects pairs of initial and the terminal nodes

that define paths passing through node . Specifically, the

first coordinate of the pair is the initial source node from

which the path begins and the second coordinate of the pair

is the terminal node of the path. The path itself must consist

of two sub-paths: the first from the initial node to node ,

and the second from node to the terminal node. Both

paths are -paths of length at least .

Queries involving more than one transitive predicates are

called composite queries. Using two or more transitive

predicates we may define composite one-source queries

with the following general form.

SELECT ?d

WHERE {

 s T1+ ?x .

 ?x T2+ ?d .

}

Composite one-source query.

Queries such as the above are composite one-source

queries. They can be generalized even further by the

inclusion of more than two transitive predicates, i.e., , ,

and so on. This query will retrieve all nodes that are

reachable via a composite path from a specific source node

denoted by . The path is characterized as composite in the

sense that it is the concatenation of two different paths, each

of length at least . The first path is a -path, meaning that

the arcs are labeled by predicate and the second path is a

-path, i.e., the arcs are labeled by predicate .

 Analogously, we have composite one-destination and

composite many sources - many destinations queries.

SELECT ?s

WHERE {

 ?s T1+ ?x .

 ?x T2+ d .

}

Composite one-destination query.

The previous query will return all nodes from which a

composite path, ending at a specific destination node

denoted by , originates. In this case too the path is

considered to be composite because it is the concatenation

of two different paths, each of length at least . The first

path is a -path, meaning that the arcs are labeled by

predicate and the second path is a -path, i.e., the arcs

are labeled by predicate .

SELECT ?s ?d

WHERE {

 ?s T1+ v .

 v T2+ ?d .

}

Composite many sources - many destinations query.

The above query has arguably the most complicated

form. It will retrieve pairs of nodes, the first node playing

the role of source, and the second node playing the role of

destination. Every pair of source and destination nodes

defines a composite path passing through a designated node

On the Feasibility of Handling Uncertainty in SPARQL Queries in the Case Of Sparse Graphs

Copyright © 2020. Innovative Research Publication. All Rights Reserve 399

. The path in question is composite, as it consists of two

smaller paths (of length at least). The first is a -path,

and the second is a -path.

Common characteristics to all the previous classes of

queries is the specification of a path or paths via the

operator + combined with the transitive predicate or

predicates (see [15]). The number of types of paths depends

on the number of different transitive predicates that appear

in the query. In the case of simple queries we encounter just

one type of path, whereas in the case of composite queries

we encounter at least two types of paths. In all cases that

paths have length at least , as this is a consequence of the

application of + operator.

The above classes of queries are of obvious practical

importance, as they enable the synthesis and retrieval of

path properties from the underlying dataset. Moreover, they

can serve as a basis for the definition of more complicated

queries, in many different ways, i.e., containing more

predicates or resulting from the conjunction of previously

defined queries.

Let us now recall that we have assumed an (implicit)

ordering of the vertices incident to each transitive

predicate . This will be useful in the formulation of the

vectors and matrices that will be required during the

computation process.

Definition 5. In the present linear algebraic setting, the

vertices can be represented by unit dimensional column

vectors using the following simple mapping:

Definition 6. Given a column vector , the set of indices

of the nonzero elements of are denoted by .

The construction outlined in Definition 2 will produce

the matrix . Ideally, this matrix should be stochastic.

It may, however, be more realistic to expect to be

substochastic. We shall argue that in the case of sparse

matrices it is practically feasible to evaluate queries of the

classes summarized in Definition 4, which constitute an

important and useful subset of SPARQL queries.

Computing these queries involves probabilistic matrices,

one for each transitive predicate appearing in the query. In

theory at least, it will require the computation of powers of

the matrix , i.e., for some The following

Proposition 1, whose proof is trivial and is omitted, presents

a well-known fact regarding such matrices.

Proposition 1. Consider the matrix , as in

Definition 2. Let be the power of , , and let

 be its elements. The elements provide

information about paths of length from node to node

in the original RDF graph. Specifically, if , then

there is no path of length from to . Otherwise, if

, for some real number , then there exists a

path of length from to with probability .

In the above Proposition 1, when we refer to paths of

length , we mean paths of length where all arcs are

labeled by the transitive predicate . Sometimes to

emphasize this fact we call them -paths. Perhaps it is
worth pointing out that the existence or not of a path of

length neither implies, nor precludes the existence of a

path of length . Another issue that may come into
play is the application or not of the threshold. The

probability assigned to the path is the measure of the

certainty about the existence of the path. If the probability is

very low then the path probably does not exist. According to

the precision constraints at hand, it might be advantageous

to view probabilities lower than a threshold as zero, thus

ignoring the corresponding matrix element. This will

increase the sparsity of the matrix and make even more

efficient its subsequent use. The existence of a -path from

 to with assigned probability , is equivalent to the

inference of the triple with degree of certainty .

A. Computing simple one-source queries

Simple one-source queries are easy to compute in

principle. Let be the vector representation of

source vertex .

Invoking Proposition 1 and using a simple induction on

, it is straightforward to show the following Proposition.

Proposition 2. Given a simple one-source query

involving the transitive predicate and the source node ,

the destinations at distance , from node are

given by the nonzero entries of vector , where:

The set of destination nodes, at any distance from , is

given by , where:

We note that the above set also contains the nodes

adjacent to .

In the case of a sparse matrix , it is more efficient to

compute this vector by successive matrix vector

multiplications, i.e., , , …, and .

First, the multiplication of a vector by a sparse matrix

requires time linear in the number of nonzero elements of

the matrix. Second, it may happen that some entries in a

vector appearing in this sequence of computations are

below the threshold. In this case, they can be simply

regarded as zeros, which will facilitate even more the

remaining calculations.

B. Computing simple one-destination queries

Symmetrically, one can easily compute simple

one-destination queries. If is the vector representation of

destination vertex , then by Proposition 1 and a simple

induction on , it can be proved that:

Proposition 3. Given a simple one-destination query

involving the transitive predicate and the destination node

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552 Volume- 8, Issue- 6, November 2020

https://doi.org/10.21276/ijircst.2020.8.6.5

www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 400

, the sources at distance , from node are given

by the nonzero entries of vector , where:

The set of source nodes, at any distance from , is given

by , where:

We note again that the set contains the nodes

adjacent to .

It is important here to emphasize that , which is the

transpose of matrix , must be used. The previous remarks

regarding the efficiency of the matrix vector multiplication

for sparse matrices, also apply in this case.

C. Computing simple many sources - many destinations

queries

Simple many sources - many destinations queries return

ordered pairs of nodes such that there is a path from

to a specific node and a path from to . The paths have

length at least . If is the vector representation of vertex

, then by combining together Propositions 2 and 3, we

derive the next proposition 4.

Proposition 4. Given a simple many sources - many

destinations query involving the transitive predicate and

the intermediate node , the source nodes at distance

, from node are given by the nonzero entries

of vector , and the destination nodes at

distance , from node are given by the nonzero

entries of vector . Hence, the ordered pairs

 of nodes such that there is a path of length at least

from to and a path of length at least from to , is

given by:

This set of pairs contains all the pairs of nodes that are

adjacent

D. Computing composite one-source queries

When answering composite queries, the major difference

compared to the previous cases of simple queries is the

presence of two or more transitive predicates. This, in turn,

causes the inclusion of two or more (substochastic)

matrices .

In the case of composite one-source queries, as the one

shown in Definition 4, we can state the following

Proposition 5, which is a generalization of Proposition 2.

Proposition 5. Given a composite one-source query

involving the transitive predicates , , and the source

node , the nodes reachable from via a -path of length

, and a -path of length , are given

by the nonzero entries of vector , where:

The set of destination nodes through a -path and a

-path, at any distance from , is given by , where:

We note that the above set also contains the nodes

adjacent to .

E. Computing composite one-destination queries

Composite one-destination queries, the general form of

which is shown in Definition 4, involve at least two

transitive predicates. Consequently, their computation must

make use of an equal number of matrices, one for

each predicate. The details of their computation is given in

the next Proposition 6, which can also be viewed as a

generalization of Proposition 3.

Proposition 6. Given a composite one-destination query

involving the transitive predicates , , and the

destination node , the source nodes from which is

reachable via a -path of length , and a -path

of length , are given by the nonzero entries of

vector , where:

The set of source nodes from which originates a -path

followed by a -path that eventually terminates at node ,

is given by , where:

We note that the above set also contains the nodes

adjacent to .

F. Computing composite many sources - many

destinations queries

The composite many sources - many destinations case

can be tackled in a similar way as the previous composite

cases. Proposition 7 that is stated next contains the details

and generalizes Proposition 4.

Proposition 7. Suppose we are given a composite many

sources - many destinations query involving the transitive

predicates , , and the intermediate node . The nodes

from which a -path of length , to emanates

are given by the entries of .

Symmetrically, the nodes to which a -path of length

, from terminates are given by the entries of

. The required ordered pairs of nodes

such that a path of length at least originates from and

ends at and a path of length at least starts from and

ends at , are given by:

The above set of pairs will also return all the pairs of

adjacent nodes to

Answering queries that are more complex, involving

more than two predicates, can be accomplished by

straightforward generalizations of the above Propositions 5

- 7.

On the Feasibility of Handling Uncertainty in SPARQL Queries in the Case Of Sparse Graphs

Copyright © 2020. Innovative Research Publication. All Rights Reserve 401

IV. CONCLUSION

In this paper, we have investigated the evaluation of

certain practically important classes of probabilistic queries

involving transitive predicates and paths. The ability to

retrieve enhanced navigational information is a useful

feature that offers concrete advantages to the practitioner.

Moreover, in many environments where uncertainty is

inherently present, the capability to reason about

probabilities, particular when assessing inferred facts is

indispensable. For these types of queries, we have shown

how they can be computed using linear algebraic methods,

and, specifically, appropriate matrix vector multiplications.

When the matrices involved are dense, this approach is

probably not very promising. Things are radically different

when the matrices involved, that is the matrices

corresponding to the transitive predicates, are sparse. Then

this method becomes efficient. Taking advantage of state of

the art data structures and techniques for sparse matrices,

e.g., Compressed Sparse Row or Compressed Sparse

Column, it is possible the perform the multiplication of the

sparse matrix with the vector in time that is linear in the

number of the nonzero elements of the matrix. The situation

can be further improved by employing a threshold. The

main idea behind the introduction of a threshold is very

simple: any probability value below the threshold signifies

some that very improbable. Therefore, by systematically

comparing the probabilities that arise during the

computational process with the threshold, and taking as

zero those that are below the threshold, we reduce the

overall number of the nonzero elements, which speads up

the performance of this method.

REFERENCES

[1] Andronikos, T., “Classification of SPARQL queries

into equivalence classes of relevant queries”,

International Journal of Advanced Research in

Computer Science, December 2017, Volume 8, No. 9,

pages 152-159.

[2] Andronikos, T., Complex Matrices for the

Approximate Evaluation of Probabilistic Queries,

International Journal of Engineering Research and

Applications (IJERA), Vol. 10, Issue 11, (Series-I)

November 2020, pp. 23-30.

[3] Andronikos T., Singh A., Giannakis K., Sioutas S.,
Computing probabilistic queries in the presence of

uncertainty via probabilistic automata, Algorithmic

Aspects of Cloud Computing, Third International

Workshop, ALGOCLOUD 2017, Vienna, Austria, 5

September, 2017, Revised Selected Papers. Springer

Theoretical Computer Science and General Issues,

Volume 10739, pp. 106-122, 2018.

[4] Motik, B., Representing and querying validity time in

RDF and OWL: A logic-based approach, Journal of

Web Semantics, Elsevier BV, 2012, 12-13, 3-21.

[5] Andronikos T., Stefanidakis M., Papadakis I., Adding
Temporal Dimension to Ontologies via OWL

Reification, Proceedings of the 13th Panhellenic

Conference on Informatics - PCI 2009 Conference,

10-12 September, Corfu, Greece, IEEE Computer

Society, pp. 19-22, 2009.

[6] López, C. P., MATLAB Linear Algebra, Apress, 2014.

[7] Fang, H. pSPARQL: A Querying Language for

Probabilistic RDF Data Complexity, Hindawi Limited,

2019, 1-7.

[8] H. Fang and X. Zhang, “pSPARQL: a querying

language for probabilistic RDF (extended abstract),” in

Proceedings of the ISWC’16, Posters, 2016.
[9] Giannakis K., Andronikos T., Querying Linked Data

and Büchi Automata, IEEE Proceedings of the 9th

International Workshop on Semantic and Social Media

Adaptation and Personalization (SMAP), 6-7

November, Corfu, Greece, pp. 110 - 114, 2014.

[10] Giannakis K., Theocharopoulou G., Papalitsas C.,

Andronikos T., Vlamos P., Associating ω-automata to

Path Queries on Webs of Linked Data, Engineering

Applications of Artificial Intelligence, Elsevier,

Volume 51, May 2016, pages 115-123.

[11] Lay, D., Linear algebra and its applications, Pearson,

2016.
[12] Hua, M., Pei, J.: Probabilistic path queries in road

networks: traffic uncertainty aware path selection. In:

Proceedings of the 13th International Conference on

Extending Database Technology, pp. 347–358, ACM,

2010.

[13] Huang, H., Liu, C.: Query evaluation on probabilistic

RDF databases. In: International Conference on Web

Information Systems Engineering, pp. 307–320,

Springer, 2009.

[14] Szeto C., Hung E., Y. Deng, SPARQL query answering

with RDFS reasoning on correlated probabilistic data,
in Proceedings of the WAIM’11, pp. 56–67, 2011.

[15] Zhang X., J. Van den Bussche, On the primitivity of

operators in SPARQL, Information Processing Letters,

vol. 114, no. 9, pp. 480–485, 2014.

[16] Lian, X., Chen, L., Wang, G.: Quality-aware subgraph

matching over inconsistent probabilistic graph

databases. IEEE Transactions on Knowledge and Data

Engineering 28(6), 1560–1574, 2016.

[17] LOD Project, 2014. Linking Open (LOD) Data Project,

http://esw.w3.org/topic/SweoIG/TaskForces/Commun

ityProjects/LinkingOpenData.

[18] Papalitsas C., Andronikos T., “Unconventional GVNS
for Solving the Garbage Collection Problem with Time

Windows”, (MDPI - Open Access Publishing),

Technologies 2019, 7(3), 61;

https://doi.org/10.3390/technologies7030061.

[19] Papalitsas C., Andronikos T., Giannakis K.,

Theocharopoulou G., Fanarioti S., “A QUBO Model

for the Traveling Salesman Problem with Time

Windows”, (MDPI - Open Access Publishing),

Algorithms 2019, 12(11), 224;

https://doi.org/10.3390/a12110224.

[20] Papalitsas C., Karakostas P., Andronikos T., “A
Performance Study of the Impact of Different

Perturbation Methods on the Efficiency of GVNS for

Solving TSP”, (MDPI - Open Access Publishing),

Applied System Innovation 2019, 2(4), 31;

https://doi.org/10.3390/asi2040031.

[21] Golub, G. H., Matrix Computations, Johns Hopkins

University Press, Fourth Edition, 2013.

[22] Banerjee, S. & Roy, A., Linear Algebra and Matrix

Analysis for Statistics, Chapman and Hall/CRC, 2014.

[23] Resource Description Framework (RDF),

https://www.w3.org/TR/2015/NOTE-rdfa-primer-201
50317/.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552 Volume- 8, Issue- 6, November 2020

https://doi.org/10.21276/ijircst.2020.8.6.5

www.ijircst.org

Copyright © 2020. Innovative Research Publication. All Rights Reserve 402

[24] Reynolds, D.: Position paper: Uncertainty reasoning
for Linked Data. In: Workshop, vol. 14, 2014.

[25] Sistla, A.P., Hu, T., Chowdhry, V.: Similarity based

retrieval from sequence databases using automata as

queries. In: Proceedings of the eleventh international

conference on Information and knowledge

management, pp. 237–244, ACM, 2002.

[26] Schmidt M., Meier M., Lausen G.: Foundations of

SPARQL Query Optimization. In: Proceedings of the

13th International Conference on Database Theory

(ICDT '10), pp. 4–33, Lausanne, Switzerland, 2010.

[27] Schoenfisch, J.: Querying probabilistic ontologies with
SPARQL, GI-Edition/Proceedings 232, 2245–2256,

2014.

[28] SPARQL 1.1 Query Language. Tech. rep., W3C

(2013),

https://www.w3.org/TR/2013/REC-sparql11-query-20

130321/.

[29] Wang, X., Ling, J., Wang, J., Wang, K., Feng, Z.:

Answering provenance-aware regular path queries on

RDF graphs using an automata-based algorithm. In:

Proceedings of the 23rd International Conference on

World Wide Web, pp. 395–396, ACM, 2014.

[30] Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.:
Context-free path queries on RDF graphs. In:

International Semantic Web Conference, pp. 632–648,

Springer, 2016.

[31] Gutierrez C., Hurtado C. A. and Vaisman A.,

"Introducing Time into RDF," in IEEE Transactions on

Knowledge and Data Engineering, vol. 19, no. 2, pp.

207-218, Feb. 2007, doi: 10.1109/TKDE.2007.34.

[32] Kepner J. G., Graph Algorithms in the Language of

Linear Algebra Society for Industrial and Applied

Mathematics, 2011.

[33] Strang, G., Introduction to Linear Algebra, Cambridge
University Press, 2016.

[34] Erisman, A. M., Reid, J. K. and Duff, I. S., Direct

Methods for Sparse Matrices, Oxford University Press;

2nd edition, 2017.

