

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-1, January 2021

 https://doi.org/10.21276/ijircst.2021.9.1.6

Article ID IRP1126, Pages 26-32

 www.ijircst.org

Innovative Research Publication 26

Meta-Modeling of AI for Software Modularization

Dr. Ahmet Egesoy

Assistant Professor, Department of Computer Engineering, Ege University, İzmir, Turkey

Correspondence should be addressed to Ahmet Egesoy; ahmet.egesoy@ege.edu.tr

Copyright © 2021 Made Ahmet Egesoy. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Recent developments in artificial

intelligence have surprisingly been only on the

machine-learning related technologies. This growing trend

brings new hardships to the already problematic AI

programming sector that looks like a zoo of paradigms. AI is

unfortunately full of incompatible technologies that can

hardly cooperate in a common multidisciplinary project.

These technologies are also under the threat of being

abandoned in favor of the emerging machine learning

techniques. However, there are many valuable ideas and

concepts in the classical AI approaches that can be quite

useful in the awaiting challenges of general AI. Such a great

endeavor will necessitate everything we know about

representing and processing knowledge. Meta-modeling of

the AI domain as a whole can bring about model driven

development as a glue for the fragmented development

efforts. In the long run it also has the capacity to trigger a

unification and revival of the art of AI programming around

a more structured central paradigm.

KEYWORDS- AI, Model-driven, Semiotic.

I. INTRODUCTION OF THE PROBLEM

Artificial Intelligence (AI) is a very popular branch of

computer science [1] that has made great progress in a

surprisingly short time. Towards the end of the 20
th

 century

there was not much optimism about the future of AI since the

contemporary developments have been in a rather eclectic

fashion. Nevertheless, in just a few decades it has made

great leaps both scientifically and commercially. AI-enabled

tools now help to direct the efforts of sales teams by

gathering useful information from raw data. They also help

finding solutions for reoccurring problems, and efficiently

addressing customer demands. Security, medicine and

self-driving cars are probably the three pioneer sectors

where innovations are the most frequent. There are a lot of

success stories in all of these fields and the socio-economic

impact of AI is getting more and more significant. The

problem with AI is that it has always been just a blanket term

that covered multiple small paradigms each of which were

good at solving an entirely different type of problem. In fact,

there is still no central theory in AI. There are expert

systems, rule-based approaches, logic representations,

evolutionary algorithms, constraint satisfaction systems and

connectionist approaches (and more) each of which imposes

its own point of view in problem solving. AI has grown more

like a bush than a tree.

 What happened recently was that one lonely stem from

that bush namely machine learning, started to develop

disproportionally and at a great pace. The machine learning

approach is computationally one of the most expensive, but

it is especially good at pattern recognition which is

ironically the weakest side of symbolic computation on

which computer technology relies on. The weakest feature

of digital computers has become their strongest feature now.

Most of what has been achieved are owed to a learning

model called neural network which just gives up all that is

symbolic and instead simulates connectionist structure of the

human brain tissues.

Neural networks have been there since a long time ago.

Only recently, three things came together to create this

explosion of success. These are hardware capacity, tons of

data available (especially on the Internet) and initial demand

that created an economy that kept the progress sustainable

(which was mostly e-commerce related).

Today neural-network based machine learning

approaches are stretching towards fields other than basic

pattern recognition tasks and achieving success too.

Although this view looks like symbolic AI has come to an

end, some people believe that it is not the case as was

discussed in [2]. In symbolic AI there are many ideas and

solutions that are too good to be given up. When we

consider that general AI (strong AI) is the ultimate goal of

the discipline, it is evident that good ideas and solid

concepts are as important as success stories.

The time we will need to appreciate an integration of

AI-related paradigms is approaching. This work does not

claim to formulate the grand unified theory of AI. However,

in my view, by solidifying the relations between some

fundamental concepts, it is possible to lay a foundation for a

better cooperation between the paradigms of AI. In time a

common understanding of concepts may lead to more than

one implementation of such unification.

In the short term, for promoting modular development

and reuse, model-driven software development [3] can be a

suitable foundation. Model-driven software development

paradigm aims at supporting meaningful incremental

development of the required models and code through the

collaboration and automatic transformation of existing

models. In this approach models are regarded as reusable

first class artefacts and software development process is

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 27

viewed as a semi-automatic course that can produce code for

multiple platforms.

The mainstream approach in model driven software

development is based on a standard called Model Driven

Architecture (MDA). MDA is a layered architecture that

enables building domain specific languages (DSL) for any

domain, for more designer-friendly development. Domain

specific languages are defined by proving a meta-model, and

by conforming to a global singular meta-meta-model, they

all integrate into the texture of MDA. In this approach, both

language and transformation definitions are meta-model

related issues.

Of course language semantics cannot be embedded into a

meta-model which is aimed to deal with syntactical validity.

However, it is my belief that a meta-model is still a good

way for clarifying things and creating a sense of

compatibility through a common reference for the use of

terminology.

II. ANALYSIS OF THE DOMAIN

A. Programming Requirement

It is a solid requirement that AI has to be a programmable

feature at least now and in the near future. It is a fact that

from a humanistic point of view the success of AI has come

too early and from an unexpected branch (machine

learning). Our cultural readiness for accepting AI as a part of

our daily lives is already questionable. The current trend in

technological developments unfortunately seems to be

demanding even more than that. Learning started to replace

programming and machines are taking control of their

development at a much earlier stage than expected.

The explainable AI movement [4] appeared as a

resistance to invasive application of black box machine

learning methods. Unfortunately, black-box Machine

Learning (ML) models are increasingly used for making

sensitive judgements and taking critical decisions. There is

an interesting demand for transparency in the software

development sector and all the areas where these products

are deployed. There is a legal and ethical risk about these

machine-originated decisions that are not straightforwardly

justifiable or legitimate.

Humans do make mistakes but humans also take

responsibility for and if possible try to correct their

mistakes. Classical software engineering involves

debugging as it relies on human programmers. However,

when a system acts on its own and does not allow obtaining

detailed explanations of its behavior, it is a great obstacle for

process refinement. Therefore, the output of a model should

be supported with adequate explanations. This is especially

true for mission-critical applications such as medicine,

security or autonomous vehicles in transportation. These

areas where errors can be lethal, severely require the ability

to backtrack responsibility, for ethical and legal reasons.

To summarize, some human control needs to be

maintained in order to keep the AI projects ethical, scientific

and manageable. We need to find new ways to keep AI

transparent enough so that it stays as an object of

engineering, design and programming.

Programming in AI has long been dominated by two

programming languages LISP and Prolog (and their close

relatives). Both are simple and elegant languages, that are

very capable in spite of their simplicity. These languages

however appeared in an era when AI was seen mostly as an

experimental field. They rely on flexible but expensive

constructs such as recursion (for both) and backtracking (for

Prolog) instead of iteration statements; they are usually

implemented as interpreters, and lastly they provide poor

support for modularization. This last weakness is especially

important because it prevents the application of proper

software engineering for larger projects.

There have been some serious attempts for adding module

feature to these languages (at the expense of their famous

purity). Prolog for example has many implementations of

both modular (basic implementations such as packages) and

object oriented programming as seen in Table 1.

Table 1: Modularity in some Prolog versions [5]

Platform Ver. Modules Object O.

SICStus Prolog 4.3.5 √ √
ECLiPSe 6.1_226 √
SWI-Prolog 7.4.2 √
Ciao 1.14.2 √ √
BProlog 8.1 √ √
JIProlog 4.1.5.1 √
LPA-PROLOG 6.0 √

Visual Prolog
7.5, Build
7502

 √

XSB Prolog 3.7 √

YAP-Prolog 6.2.2 √

Along with these implementations there has also been

attempts to generalize Prolog onto a wider mathematical

domain. Λ-Prolog was introduced as an extended Prolog and

it included provisions for higher order functions, λ terms,

higher order unification, polymorphic and abstract data

types [6]. The language supported modules through its own

dynamic logical foundations [7], however practical software

engineering was still a challenge since it was too abstract

when compared with standard Prolog. Although standard

Prolog is based on Horn clauses, λ Prolog is based on higher

order hereditary Harrop formulas, providing higher degree

of abstraction nevertheless having to be much more

expensive to be executed.

B. Assessing Alternatives

One of the most traditional AI approaches involves

creating (usually a hierarchy of) alternative solutions to a

problem and then performing a heuristic comparison and

search for the best option. This create/search routine may be

repeated in a (probably recursive) loop until the desired

solution is reached. This technique is very suitable for tasks

like game playing or theorem proving. It also works well for

solving a puzzle, finding way in a labyrinth, or finding a

certain path that obeys certain constraints on a graph.

These problems require two things. Firstly, creating,

traversing and managing trees should be made easy;

secondly in each node of a tree the programmer should be

https://en.wikipedia.org/wiki/SICStus_Prolog
https://en.wikipedia.org/wiki/ECLiPSe
https://en.wikipedia.org/wiki/SWI-Prolog
https://en.wikipedia.org/wiki/Ciao_(programming_language)
https://en.wikipedia.org/wiki/JIProlog
http://www.lpa.co.uk/win.htm
https://en.wikipedia.org/wiki/Visual_Prolog
https://en.wikipedia.org/wiki/XSB
https://en.wikipedia.org/wiki/YAP-Prolog

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 28

able to create a new environment of truths and variables.

Which means that each node ought to have its own local

namespace, logical statements and maybe rules.

C. Working with Patterns

At the two extremes of symbolism spectrum there are

computer vision and formal language processing both of

which are very popular fields of study. Formal languages are

fully symbolic whereas images are not symbolic at all. On

this spectrum, in between the two extremities there are

natural languages, signals, voice and sensor data.

Symbolic and non-symbolic data create different

difficulties when they are subject to pattern recognition. At

the symbolic end, the formal languages are very easy to cope

with. In compiler design for example patterns are detected

very easily through a process called parsing. Even a

language like C can be very effective for coding a parser,

since nothing more than recursion is required for top-down

parsing. Parsing natural language is not that straightforward

and a bottom up parsing approach together with

backtracking may be necessary. In this case Prolog would be

a better choice.

Non symbolic data is much more difficult to interpret. In

relatively basic applications features are extracted and

evaluated. As problems get bigger and more complicated,

machine learning techniques become dominant.

D. Fuzzy or Soft Programming

There are many post-modern challenges to classical

programming such as soft-computing, multiple criteria

decision taking and machine learning. There are also a lot of

hybrid applications of these techniques. One important

source of domain information is interaction with a human

expert. Fuzzy logic makes this possible by creating a bridge

between human mind and mathematics. Fuzzy logic is a kind

of many-valued logic in which the truth values are

considered to be real numbers between 0 and 1 (inclusive). It

is used for representing the concept of partial truth, where

the truth value is somewhere between true (1) and false (0).

Programming by using fuzzy data was an immediate

requirement and attempts were made for implementing

fuzzy logic in Prolog. Prolog-Elf [8], Fril Prolog [9] and

F-Prolog [10] are examples of fuzzy Prolog

implementations. Unfortunately, they are not easy to use and

have never got very popular. A fuzzy Prolog is usually based

on a concept of fuzzy resolution [11] which is said to be a

generalization of the classical predicate resolution which

standard Prolog relies on (the term “generalization” is a

little tricky for complex phenomena like resolution which in

the Prolog context sometimes works by failing).

E. Machine Learning

Image processing is a very typical success story of the

machine learning paradigm. Medical imaging is a group of

cooperating technologies that are indispensable for effective

detection of diseases and anomalies. The digital output

provided from these imaging sources are suitable for

computer processing and employment of AI. The AI

assistance cumulates in two fields: Computer Aided

Detection (CADe) and Computer Aided Diagnosis (CADx)

[12].

Theoretically there is no obstacle for a sufficiently

complicated neural network system to exceed the success of

a human expert in a well-defined pattern recognition task.

With the emerging machine learning technologies more

success stories may be expected from any problem that can

be classified as pattern recognition. In fact, if the success is

not achieved yet, it can be expected after the development of

correct models or reaching a certain hardware capacity

requirement.

In neural network technology a layered and densely

connected network is trained with a large input and

(corresponding) output set. Afterwards the network acts as a

function that creates similar output for similar input. Of

course this is a very rough description of the technique

which has some more parameters and details.

One important variation is the employment of

convolution transformations that are applied in image

recognition systems, as a preprocessing of the raw image in

order to recognize features that are related to the shapes in

the image. The architecture of each project takes place as an

amalgam of little transformations that form a directed

network starting from raw data and ending up in a result.

Another variation is called the residual network

architecture which is preferred for solving a technical

difficulty called the vanishing gradient problem. It occurs in

networks that are too deep and can be imagined as a

confusion that originates from the inherent chaotic behavior

of big interacting systems. Residual networks as applied in

[13] solves the problem by applying fewer layers but a more

densely connected network (so dense that it violates

layering) with connections that overreaches layers.

There are other network topologies too like recursive

neural networks, recurrent neural networks (RNN) and long

short term memory type networks that are used for natural

language processing. These networks can store information

between cycles, so that they can respond to certain

sequences of input.

Whatever the inner details may be, the components of a

machine learning project usually are structured like the

example in Fig. 1 which is a preliminary design for an

ongoing project about automated triage by using three

dimensional CT (computerized tomography) images of head

scans.

Fig. 1: Automated triage project architecture

As can be seen in this architecture the whole process can

be modeled as an application of the data pipeline computing

paradigm. Since there is just one entry and one exit, it is also

possible to approach the domain from a functional

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 29

(LISP-like) point of view. From modelling point of view, the

transformation concept in model driven software

development [3] has a direct potential application here.

Going a little deeper into this case one would notice that

supporting rules of logic (or more generally fuzzy logic) in

the design language may provide some benefits in detailed

design. For example, the DICOM image provided as input

has approximately 250 layers most of which are normal

(healthy) images. However, the number of normal images is

unimportant if there is a single very serious indication of an

injury or a malignant disease in any one of the 250 pictures.

Therefore, for meaningful assessment there should be a

disjunction operation in between each of the 2d prediction

results that are obtained by processing the layers one by one.

The result of the whole scan is malignant, if image1 OR

image2 OR …image250 is malignant (or risky). Fuzzy

computation of risk requires one of the fuzzy triangular

conorms to be used. The design of image recognition (or

similar) projects therefore requires logical connectives that

bind the various sections of data together. Fuzzy logic is a

better alternative than plain logic since the system uses

non-discrete values everywhere and a loss of information is

not tolerable.

III. THE AI META-MODEL

Firstly, we should note that a meta-model does not aim

solving any of the problems of the domain that it refers to.

For example, it does not claim to show a better way to

perform clustering, classification or search. That is the job

of the semantic dimension of developing a new paradigm.

The meta-model deals with the syntactical issues, which is in

a way solving the accidental problems of program

development (as the term was used by Brooks [14]) rather

than essential problems. It is a bit like focusing on the

shelves of a library before considering the book collection.

It may seem unnecessary as a first move but in fact it can

make the subsequent moves to be more structured and to the

point.

The meta-model that will be partially presented here

employs UML class diagrams which should be perceived on

the conceptual level.

There is also one diagram by which compatibility has

been described by using an extension of UML based on a

specific meta-model, called the Mega-model which was

developed by Favre [15] so as to facilitate the definition of

inter-model relations. The mega-model introduced by Favre

can be described as: Every model is a system with a special

mega-relation (called RepresentationOf and denoted with

the Greek letter μ) with another system and any system can

have any mega-relation freely with any other system.

The Mega-model contains a small set of relations marked

with Greek letters χ, µ, δ, ε and τ. In this language χ means

conforms to, µ means representation of, δ means part of, ε

means element of (for sets) and τ means transformation.

We have extended this notation by redefining µ as symmetry

(or similarity) and adding Σ to denote signification

(signifies). This notation [16] is necessary for moving

slightly towards the semantic side and defining modeling

relations as well as semiotic relations. These Greek letters

are also very useful inside the UML diagrams.

Fig. 2: Model interior structure

Fig 2. shows an internal definition of a working model of an

existing object in UML class diagram syntax. These are

special models like the map of France (special to the

country of France) or a record of Student Smith Jones. The

model is composed of two parts. One is a set of logical

statements about the subject (which is an individual) and the

second part is a sign that points at that individual.

Map of France most probably has a title on it that informs

the user that it is a map of the country called France. Without

this title (unless the user recognizes the map somehow) the

map would be useless because it would fail to make any

logical statements without an anchor that links the

statements to any known references. So the title serves as the

sign that points at the object (individual) of the map, and the

rest of the map provides the statements.

Same thing is true for the database record for Smith Jones.

The first two fields of the record are Name and Surname

which together constitute a sign that points at the individual.

(Sometimes this role is duplicated as StudentNo for

example.) The rest of the record provide the statements.

Such as “his age is 20.”, “his GPA is 3.1 and so on.

Fig. 3: Sign types

In Fig 3, an inheritance hierarchy is given for types of

signs. Indexical, Symbolic and Iconic signs are parts of the

semiotic literature [17]. An indexical sign is a sign that

signifies its object by physically pointing at it; that is

through an unmistakable physical connection that does not

require any subjective interpretation. A good example from

the world of software development could be a C pointer

(which is hardware interpreted thus solid enough).

A symbolic sign is one that needs an interpretation to be

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 30

able to signify its object. This interpretation is purely

symbolic, in the sense that there is no need for a physical

connection or resemblance between the sign and the object.

In fact, the connection is purely in the mind of somebody

who interprets the sign (could as well be a machine). The

connection is arbitrary and hypothetical. A good example is

the way a letter in a phonetical alphabet signifies its sound.

The connection between letter “A” and its sound can only be

constructed by someone who has this assumption in his

mind. The identifiers and keywords in a program are good

examples of symbolic signs.

The third kind of sign is an iconic sign, which signifies its

object by resemblance (by being like it). A picture of

something for example can serve as an iconic sign for it.

There are also hybrid cases of signification. A traffic sign

with the picture of an animal on it can be regarded as iconic

and symbolic at the same time while another traffic sign with

an arrow on it could be seen as indexical and symbolic.

A query can be regarded as an iconic sign since it binds its

object through a physical comparison. The query contains

(not given in the figure) a domain (like a filename for

example) and a pattern to search for, within that domain.

This way it signifies multiple entities. Support for fuzzy

logic would require partial signification too. A query such as

“the tall people in the class” should return pointers of

different strengths for a number of students. This issue is

referred in fuzzy sets but not studied within the context of

semiotics.

Fig. 4: Modality tree

The construct called Mode constitutes a tree (as can be

observed from its cyclic links in Fig 4.). This can be a tree

for alternatives for game playing. It can also support an

inheritance tree. Each mode contains a set of logical

statements that are valid within its own environment.

Logical statement of course is a very flexible construct that

can be used in order to represent almost anything.

Child modes can also reuse or override the information

inherent from their parent. With proper semantics this

element can be used for controlling scope and environment

of information.

Fig. 5: Data fusion and its types

In Fig 5. the meta-model construct Fusion is defined as an

extension of the construct Mode. As well as information that

it inherits from its parent Mode (which are thought to be

meta-information), Fusion also has a set of components that

are other Modes. This works just like multiple inheritance.

Fusion takes potentially conflicting information from its

components and merges them in a way that is proper for the

application. Logical connectives are added to the diagram as

types of Fusion and Learning Fusion has been added as a

forth type. This classification is of course very shallow and

there are a number of statistical formulas used for data

fusion. These techniques are omitted since they are

implementation details.

Fig. 6: Concept as an interpreter

In Fig 6. the relation between Concepts and Objects is

depicted. Concept is similar to a class in object oriented

paradigm, but it is more abstract. A Concept may have

various Patterns as alternative Metamodels (different ways

to represent the same concept). Patterns can be thought of as

a set of relations that hold between a set of variables. The χ

label represents a conforms-to relation between the Object

and a Pattern. The Pattern of the Concept can read the

Object and create its meaning as a Value. What is not shown

in the figure is that the Object is an instance of the Concept

(not to make the diagram too busy). Value belongs to the

Domain which is the extensional definition of the Concept.

The Σ relation between the Object and the Value is the basic

signification relation. The whole diagram is about the case

that, an instance of a Concept can point at a Value within the

Domain of that Concept, through the interpretation of (a

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 31

meta-model related to) that Concept. The diagram simply

describes the relation between type and its instance.

Fig. 7: Compatibility between entities [16]

In Fig 7, is from our former work [16] and it uses our

extended mega-relations. This figure shows the idea behind

the µ relation which indicates similarity. Two things are

similar if they point at (as signs) the same entity (called

Invariant here) through the same interpreter I. The two

entities are arbitrarily named as Object and Model although

the relation is symmetrical. It is true that when two things are

similar, they can be used as models of each other. Naming

one as the Model is just an intentional role that cannot be

attributed to an objective inherent quality. Therefore,

instead of the modeling relation, as Favre has suggested

[15], Similarity is the preferred label here.

Another point of attention is that µ is context dependent

and it depends on a certain interpreter I. Two things are

equivalent only with respect to a certain point of view. We

can imagine that Object is three apples, Model is three

oranges and I is simply the counting operation. In this case

the Invariant is simply the number 3. Object and Model are

said to be similar with respect to the counting operation.

Fig. 8: Two values on a Domain.

In Fig 8, the Invariant acts as an interpreter now. It is not

shown in this diagram that the Invariant Concept is signified

by both X and Y, however it acts like their data type. This

means that X and Y belong to the same data type (they are

compatible). Being their data type, the Invariant Concept

can interpret these two values leading to two positions on a

common domain namely A and B.

After defining these variables, it is possible to place a

foundation for fuzzy values. It can be stated that:

Similarity (X,Y) = 1 / Distance (A,B)

or rather its context dependent version:

Similarity (X, Y, IC) = 1 / Distance (A, B, Domain)

where IC is the Invariant Concept.

Fig. 9: Transformation

Fig. 9, depicts a grid-like diagram that demonstrates the

general components of the transformation of data. The three

nodes at the top constitute the interface part of this concept

and that is the only part we would worry about, in the case of

encapsulating machine learning applications for example.

The two layers beneath that layer, represent the

implementation of the transformation.

Transformation as a Concept, defines input and output as

Concepts (classes), while the implementation of that

transformation contains meta-models for Input and Output.

Input meta-model shows how to read the source and output

meta-model shows how to write the target. The

Transformation Instance is the actual (dynamic)

transformation that takes place between the objects.

Supporting an image recognition learning system requires

further details such as degree of abstraction and generality

of data as properties of the input and output concepts. When

designing neural network topologies these parameters take

action. For example, a wider network is said to support more

specific information (less general) while a deeper network

supports more abstract information (less concrete).

IV. CONCLUSION

Our attempt in this work has been a bit like trying to develop

object oriented paradigm starting from UML, so it is a

confusing task that is hard to position within the big picture.

However, the AI domain is inherently messy and with the

rise of machine learning, software development is becoming

an ad-hoc endeavor while research is taking the form of

communicating dinner recipes.

AI should be engineered in a structured, integrated and

multi-paradigm fashion. In this work a meta-modeling

approach was advocated as a first step for the unification of

the AI domain. In the short term this may support model

driven development of AI applications and in the long term

it may constitute the first step for laying the foundations for a

grand AI paradigm.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 32

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] P. H. Winston, “Artificial Intelligence”, Addison-

Wesley, Reading, Ma, third edition, 1992.

[2] J. Wang, (2021, January) “Symbolism vs.

Connectionism”, A Closing Gap in Artificial

Intelligence”, Jieshu’s Blog, 2017, Available:

http://wangjieshu.com/2017/12/23/symbol-vs-connecti

onism-a-closing-gap-in-artificial-intelligence/

[3] J. Bezivin, “On the unification power of models”,

Journal on Software and Systems Modeling 4, 2005, pp.

171–188.

[4] A. B. Arrieta, et al., “Explainable Artificial Intelligence

(XAI): Concepts, taxonomies, opportunities and

challenges toward responsible AI”, Information Fusion,

Vol 58, June, Elsevier, 2020, pp. 82-115.

[5] M. J. Kemtongue, “Modularization Challenges in

Prolog: What to Divide and Conquer in AI”, in

Intelligent and Fuzzy Techniques in Big Data Analytics

and Decision Making, Springer, January 2020,

pp.330-337.

[6] G. Nadathur, D. Miller, “An Overview of Lambda

Prolog”, Technical Report, University of Pennsylvania,

Scholarly Commons, Department of Computer and

Information Science, June 1988, unpublished.

[7] D. Miller. “A proposal for modules in lambda Prolog”,

in Proceedings of the 1993 Workshop on Extensions to

Logic Programming, volume 798 of Lecture Notes in

Computer Science, 1994, pp. 206–221.

[8] M. Ishizuka, N. Kanai, “Prolog-Elf Incorporating

Fuzzy Logic” in: IJCAI 9, vol. 2, 1985, pp. 701-703.

[9] J. F. Baldwin, T. P. Martin, B. W. Pilsworth, “Fril:

Fuzzy and Evidential Reasoning in Artificial

Intelligence”, John Wiley and Sons, 1995.

[10] D. Li, D. Liu, “A Fuzzy Prolog Database System”, John

Wiley & Sons, New York, 1990.

[11] R. C. T. Lee, “Fuzzy Logic and the Resolution

Principle”, Journal of the Association for Computing

Machinery, 19(1), 1972, pp. 119-129.

[12] J. Gao, Q. Jiang, B. Zhou, D. Chen, “Convolutional

Neural Networks for Computer-aided Detection or

Diagnosis in Medical Image Analysis: An Overview”,

Mathematical Biosciences and Engineering, 16(6)

2019, pp.6536-6561.

[13] J. J. Titiano, M. Badgeley, J. Schefflein et al.,

“Automatic Deep-neural-network Surveillance of

Cranial Images for Accute Neurological Events”, Nat

Med 24, 2018, pp.1337-1341.

[14] F. P. Brooks, “No Silver Bullet: Essence and Accidents

of Software Engineering,” Computer, IEEE Computer

Society Press, 20(4), 10-19, April, 1987.

[15] J. M. Favre, T. Nguyen, “Towards a Megamodel to

Model Software Evolution through Transformations”,

SETRA Workshop, Elsevier ENCTS, 2004.

[16] A. Egesoy, “Context-Aware Formalization of

Inter-Model Relations”, International Journal of

Computer and Information Technology (IJCIT), Vol:3,

No:6, November 2014, pp.1461-1467.

[17] D. Chandler, (2021, January) “Semiotics for

Beginners”, Aberystwyth University, Available:

http://visual-memory.co.uk/daniel/Documents/S4B/

ABOUT THE AUTHOR

Ahmet Egesoy (PhD in Computer

Engineering) is an instructor and

Assistant Professor in Computer

Engineering Department of Ege

University Izmir, Turkey. Research

interests include object-oriented

programming, design patterns,

model-driven software development,

artificial intelligence, programming languages,

programming paradigms, philosophy of the language,

semiotics and knowledge representation.

