

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-5, September 2021
 https://doi.org/10.21276/ijircst.2021.9.5.5

Article ID IRP1208, Pages 32-37

 www.ijircst.org

Innovative Research Publication 32

Empirical Investigation of Cloud, Grid and Virtualization Using

Compiler Optimization Level for Threads Processes

Solanke Ilesanmi
1
, Alomaja Victor Ojumu

2
, Ajayi Abiodun Folurera

3
, and Ajao Aisha Omorinbola

4

1, 2, 3 Department of Computer Technology, Yaba College of Technology, Yaba Lagos, Nigeria
4 Department of Computer Science, Federal College of Fisheries and Marine Technology, Lagos. Nigeria

Correspondence should be addressed to Solanke Ilesanmi; solankesanmy@gmail.com

Copyright © 2021 Made Solanke Ilesanmi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- This research focused on the
implementation of Open MP. It considers the parallelization

of an application code that simulates the thermal gradient of

material in two dimensions. A ‘C language’ program code

called jacobi2d.c that solves a rectangular 2-dimensional

heat conductivity problem using Jacobi iterative method

was used. The boundary conditions required to compute a

temperature distribution for a rectangular 2D problem are:

Top 300C, Bottom 500C, Left 400C and Right 900C with a

range of problem sizes enter as a run-time parameter to alter

the problem sizes and convergence criteria. Also, there

were computations and readings for iterations and runtime
for four values of M and N which were selected for 01, 02,

and 03 optimizations. In Table 1 Readings, four values

were selected for each of the iterations. The results show

the performance of the runtime as the processor increases

from 01-optimization, to 02-optimization and finally to 03-

optimization. It can be deduced from the representation that

the run time of the values reduces as more resources are

allocated to execution through the increase in optimization

level. Also, in Table 2 Readings, the runtime decreases as it

moves from thread1, thread2, thread3, and thread4,

comparing the last values for thread1 which are M is 180, N
is 200, and their runtime which is 42.797187001. Also the

last values for thread2 which are M is 180, N is 200, their

runtime which is 21.772106003. When the two runtimes

were compared, it was discovered that there was a decrease

in the runtime because the more the thread increases, the

more system resources they share such as a processor which

may affect their runtime by increasing it.

KEYWORDS- Cloud Computing, Compiler

Optimization, Grid, Thread Processes.

I. INTRODUCTION

Cloud computing emerges as a new computing paradigm

which aims to provide reliable, customized and QoS

guaranteed computing dynamic environments for end-users

[11]. A cloud computing is an approach where large scale

related capability computer resources and infrastructures

are provided in form of services across the Internet to

numerous customers. A grid machine can be described as

an infrastructure that can be used for solving dynamic

problems, such as multi-processes, resources allocation and

a centralized control mechanism, using a standard set of
protocols and interfaces to deliver significant quality

services [3].

The enormous computing resources demand of a process

can be solved by a parallel computing implementation

specifically developed to work in Grid environments of

multiprocessor computing resources. The different parallel

computing approaches (intra-node, inter-node and inter-

organisations) are not sufficient to address the computing

resources demand of such a big problem [1].

II. CLOUD, GRID AND VIRTUALIZATION

This research enhances the context of Grids, Clouds, and

Virtualization. Grids computing ensure the delivery of

computing power and resources on demand. However,

despite the various contributions of active research in the

area of grid computing, no viable commercial grid

computing provider has emerged. In daily activities, some

users or consumers of computational resources will always

need to make provision for their own supercomputers that

can guarantee speed, timely delivery and multi-processing.

The concept of Cloud Computing is not a completely new
approach, research has established that there is a relative

correlation between Grid Computing, cloud computing and

other relevant technologies such as utility computing,

cluster computing, and distributed systems in general [5].

The concept of Virtualization is a technology that enables

many different Clouds to be integrated. Some researchers

focused the definition of grid, cloud and virtualization

around on-demand access to computing, data, and services.

A grid system comprises of hardware and software

infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end

computational capabilities [6].
The concept of Cloud computing is an information

technology approach that is characterized by ubiquitous

access to shared resources and services that can be provided

rapidly with minimal interference, via the Internet facilities.

In cloud computing, there is sharing of resources such as

mailto:solankesanmy@gmail.com

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 33

software and hardware in order to achieve a coherence

services and cost saving approach. In the field of computer

science, a thread of execution comprises of the smallest
sequence of executable instructions that can be processed

independently by a scheduler, which forms part of the

operating system. Different operating systems processes

threads and processes differently from one another, but

mostly a thread is made up of the component of a process.

Many threads can executed within a single process,

executing concurrently and sharing the same computer

resources such as memory, while some processes do not

share memory resources or computer resources. Most times,

the threads of a process can share its executable code and

the values of its variables at any given time [8].

The issue of Virtual Machine (VM) concept dates back to
the early 60s, this approach was introduced by IBM as a

means to provide concurrent, interactive access to their

mainframe computers. A VM was an example of the

physical machine and gave users the illusion of accessing

the physical machine directly. Virtual Machine was

developed and used to enable time-sharing and resource-

sharing at the same time on the expensive hardware

resources. Virtualization has been helpful in reducing the

cost of hardware resources and to improve the overall

productivity by accommodating as many users as possible

to work on it simultaneously [3]. However, as technology
advances and become more integrated, the hardware has

become cheaper and affordable and at the same time

multiprocessing operating systems has been invented and

integrated [2].

III. METHODOLOGY

The development of mobile and portable computing devices

has created an enabling environment for minimizing the

power consumed by a computer program. In the early

development, the limitations of the computer memory have
been a limiting factor which hampers the performance of

optimizations. Because of all these influence, optimizations

do not often produce optimal result, and in fact an

optimization sometimes may become an impediment to

performance of resources. As a result of these problems,

there is a need for compiler optimization and compares of

runtime in threads processes in order to determine the

processor performance.

The objective of this research is the Implementation of an

OpenMP which considers the parallelization of an

application code that simulates the thermal gradient of a

material in two dimensions using C language program code
called jacobi2d.c and compares the results of the

optimization and threads processes in order to determine the

performance of the runtime as the processor increases.

The study adopted a combination of qualitative and

quantitative research methods. It explores the concept of

cloud, grid and virtualization. Also utilizes parallelization

of an application code which simulates the thermal gradient

of a material in two dimensions using a C language

program code called jacobi2d.c that solves a rectangular 2

dimensional heat conductivity problem using Jacobi

iterative method to test the runtime and determine the

performance of the processor. This research analysis was

conducted using University of Greenwich UK CMS grid

machine resources.

IV. DATA PRESENTATION AND ANALYSIS

A. Compiler Optimization

STEP 1

In the step one of this research, there is a modification to
the jacobi2d.c code to reflect the following boundary

conditions, at top 30C, bottom 50C, left 40C, and at the

right 90C. The tolerance was set to 0.0001, the result was

set to not printing using 0, and 1 for printing of the

boundary sizes. Four different values were selected for M

and N for different optimization, which comprises of 01-

optimization, 02-optimization and 03-optimization.

 Reflection of boundary sizes

Compiler optimization is a process to minimize the time

taken to execute a program. The Figure 1 indicates the

reflection of boundary sizes, while Figure 2 comprises of
compiler, program and runtime parameters. In this step 1,

the jacobi2d.c code was modified to:

Fig. 1: Reflection of boundary sizes.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 34

.

Fig. 2: Screen shot for Compiler, program name and runtime parameters

B. Optimization Level

The following computations are the readings of iterations

and runtime for the four values of M and N which was

selected for 01, 02 and 03 optimizations. Four values were

selected for each of the iterations, and the table below

shows the four values and the result of the iteration and the

runtime for each of the iterations performed.

Compiler: gcc jacobii2d.c –o jacobii2d, Executable

name: jacobii2d

Table 1: Readings for 01, 02, 03 optimization Runtime for values M and N

READINGS

FOR

01-OPTIMIZATION

Value M Value N Runtime Iterations Difmax

220 220 25.322168 39338 0.00009999646

260 260 58.745318 50275 0.00009999393

300 300 76.422497 61630 0.00009999820

400 400 197.952488 90696 0.00009999933

READINGS

FOR

02-OPTIMIZATION

Value M Value N Runtime Iterations Difmax

220 220 16.488465 39338 0.00009999646

260 260 28.701726 50275 0.00009999393

300 300 46.694705 61630 0.00009999820

400 400 151.077582 90696 0.00009999933

READINGS

FOR

03-OPTIMIZATION

Value M Value N Runtime Iterations Difmax

220 220 16.314877 39338 0.00009999646

260 260 27.160550 50275 0.00009999393

300 300 45.176557 61630 0.00009999820

400 400 130.857994 90696 0.00009999933

In the above table 1, comprises of the readings for 01, 02,

03 optimizations for four selected values of M and N. It was

discovered from the readings and the results of the runtime
that the runtime decreases as the optimization level

increases; this indicates that the processor allocates more

resources and thereby increasing the rate of execution

runtime. In order to explain this in a more graphical form, a

bar chart was used to illustrate the runtime performance.

This bar chart explains the performance of the runtime as

the processor increases from 01-optimization, to 02-

optimization and finally to 03-optimization. We could
deduce from the graphical representation that the run time

of the values reduces as more resources are allocated to

execution through the increase in optimization level.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 35

From the above table 1, the last runtime for each of the

optimization values was selected, which comprises of 01

optimization, 02-optimization and 03-optimization.
For all the last values of the each optimization:

M is 400, N is 400

Computing the runtime for the extracted last values in each

optimization, we have:

Table 2: Extracted last values of M, N in each optimization

Fig. 3: Runtime Result of 01,02,03 optimizations for value

M,N

In summary of the chart analysis above, it is recorded that

for values M 400, N 400 with following runtime

(197.952488) for 01-optimization, runtime (151.077582)

for 02-optimization and runtime (130.857994) for 03-

optimization, it was discovered that when the processors are

optimized, or when higher optimization are used to run a set

of values, the runtime tends to decrease with respect to the

increase in optimization. The result of the chart above, can

therefore be concluded that the blue lines which signifies

the rate of the runtime decreases with the respect to increase

in optimization.

C. Open MP Parallel Version of Jacobi Code

STEP 2

In step 2, there is a modification to the application created

in step1 to be able to get parallel of the code with openmp

using the code (#pragma omp parallel for default (shared)

private(i,j)). Timer was also included using the timer code

(omp_get_wtime();) so as to determine the parallel runtime

of the code, it was also tested on four (4) threads or

processors to be able to measure the performance and

record the parallel runtime.

Fig. 4: Openmp Parallel code

D. Threads Level

Compiler:gcc-fopenmp jacobiopenmp.c -o

jacobiopmmp, Executable name: jacobiopenmp

V. DISCUSSION OF FINDINGS

The table 2 above shows the various readings for value M

and N for about four (4) threads, the readings consists of the

values, runtime, iterations and Difmax for each of the value

used. The same set of values was used for all the four

threads in order to make comparison between the values,

especially their runtime. Based on the readings taken from

the four (4) threads, the following were discovered:

 The runtime decreases as it moves from thread1,

thread2, thread3 and thread4, comparing the last values
for thread1 which are M is 180,N is 200, and their

runtime which is 42.797187001 . Also the last values

for thread2 which are M is 180, N is 200, their runtime

which is 21.772106003. When the two runtimes were

compared, it was discovered that there was a decrease

in the runtime because the more the thread increases,

the more system resources they share such as a

processor which may affect their runtime by increasing

it.

 The iterations are the same for all the values for

thread1, thread2, thread3, thread4.

 The Difmax are also the same for thread1, thread2,

thread3, thread4.

Optimizations Runtime

01-optimization 197.952488

02-optimization 151.077582

03-optimization 130.857994

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 36

Table 3: Readings for 1,2,3,4 Threads Parallel Runtime for values M and N

READINGS
FOR

THREAD 1

Value M Value N Runtime Iterations Difmax

70 80 1.489187002 7589 0.00009998674

100 120 5.872882999 14161 0.00009997808

140 160 18.256341003 23698 0.00009998894

180 200 42.797187001 34672 0.00009999279

READINGS
FOR

THREAD 2

Value M Value N Runtime Iterations Difmax

70 80 0.807676002 7589 0.00009998674

100 120 3.106940001 14161 0.00009997808

140 160 9.461168002 23698 0.00009998894

180 200 21.772106003 34672 0.00009999279

READINGS
FOR

THREAD 3

Value M Value N Runtime Iterations Difmax

70 80 0.742388003 7589 0.00009998674

100 120 2.592556998 14161 0.00009997808

140 160 7.853976000 23698 0.00009998894

180 200 16.931387000 34672 0.00009999279

READINGS
FOR

THREAD 4

Value M Value N Runtime Iterations Difmax

70 80 0.576768998 7589 0.00009998674

100 120 1.973710999 14161 0.00009997808

140 160 5.704780001 23698 0.00009998894

180 200 14.126476999 34672 0.00009999279

In addition to the results of the readings in above table 3.

M is 180, N is 200

Table 4: Extracted last values of M and N in each thread

THREADS RUNTIME

01-Thread 42.797187001

02-Thread 21.772106003

03-Thread 16.931387000

04-Thread 14.126476999

Fig. 5: Step 2 Runtime results

In Figure 5 interprets the runtime for each thread. For the

Figure 5, the last values of each thread were used for

thread01, thread02, thread 03 and thread04. The last values

of all the threads are:

This graph (Figure 5) shows additional information on the

decrease in runtime as the number of threads increases.

VI. CONCLUSION

This research work demonstrates using Open MP to

parallelize a practical application. It shows how parallel

performance tuning using Open MP as well as compiler

optimizations can be used to achieve improved

performance. The parallelization of an application code

which simulates the thermal gradient of a material in two

dimensions was used. The research work explains the

performance of the runtime as the processor increases from

01-optimization, to 02-optimization and finally to 03-
optimization. We could deduce from the result

representation that the run time of the values reduces as

more resources are allocated to execution through the

increase in optimization level. Also, it was discovered that

there was a decrease in the runtime because the more the

thread increases, the more system resources they share such

as a processor which may affect their runtime by increasing

the run time.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 37

CONTRIBUTIONS TO KNOWLEDGE

In contributing to knowledge, the study has demonstrated

how parallel performance and compiler optimization can be

used to achieve improved processor performance, the
following recommendations are suggested: Better

performance can be achieved when grid machine resources

are not frozen or overloaded by multiple users who are

running parallel code at the same time. Also, it is important

to note that for a swarm or large user grid platform,

provisions of robust grid machine resources is necessary in

order to avoid freeze or overload.

REFERENCES

[1] Aparício, G., Blanquer, I., & Hernández, V. (2006, June). A
parallel implementation of the k nearest neighbours classifier
in three levels: Threads, mpi processes and the grid. In
International Conference on High Performance Computing for
Computational Science (pp. 225-235). Springer, Berlin,
Heidelberg.

[2] Chiueh, S. N. T. C., & Brook, S. (2005). A survey on
virtualization technologies. Rpe Report, 142.

[3] Cafaro, M., & Aloisio, G. (2011). Grids, clouds, and
virtualization. In Grids, Clouds and Virtualization (pp. 1-21).
Springer, London.

[4] Dagum, L., & Menon, R. (1998). OpenMP: an industry
standard API for shared-memory programming.
Computational Science & Engineering, IEEE, 5(1), 46-55.

[5] Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, November).
Cloud computing and grid computing 360-degree compared.
In Grid Computing Environments Workshop, 2008. GCE'08

(pp. 1-10). Ieee
[6] Foster, I., & Kesselman, C. (Eds.). (2003). The Grid 2:

Blueprint for a new computing infrastructure. Elsevier.
[7] Lombardi, F., & Di Pietro, R. (2011). Secure virtualization for

cloud computing. Journal of Network and Computer
Applications, 34(4), 1113-1122.

[8] Lamport, L. (1979). How to make a multiprocessor computer
that correctly executes multiprocess progranm. IEEE

transactions on computers, (9), 690-691.
[9] Mc Evoy, G. V., & Schulze, B. (2008, December). Using

clouds to address grid limitations. In Proceedings of the 6th
international workshop on Middleware for grid computing (p.
11). ACM.

[10] Smith, R. (2009). Computing in the cloud. Research-
Technology Management, 52(5), 65-68.

[11] Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer,

D., & Karl, W. (2008, September). Scientific cloud computing:
Early definition and experience. In High Performance
Computing and Communications, 2008. HPCC'08. 10th IEEE
International Conference on (pp. 825-830). IEEE.

[12] Youseff, L., Butrico, M., & Da Silva, D. (2008,
November). Toward a unified ontology of cloud computing. In
Grid Computing Environments Workshop, 2008. GCE'08
(pp. 1-10). IEEE

ABOUT THE AUTHORS

 Dr. Solanke Ilesanmi is currently
working as a Lecturer in the
Department of Computer Technology,
Yaba College of Technology. He holds
a Bsc, Msc and Ph.D in Computer
Science. His research interest includes
Green Computing, Machine Learning,

Software Complexity, Artificial
Intelligence and Data Mining.

 Alomaja Victor Ojumu is currently
working as a Lecturer in the
Department of Computer Technology,
Yaba College of Technology. He holds
Professional Certifications, Higher

Diploma in MIS, PGD Computer
System Networking, Bsc Computer
Science, Msc in Computer Science. His
research interest includes Software
Complexity, HCI, Machine Learning
and Networking.

 Ajayi Abiodun Folurera is currently
working as a Lecturer in the

Department of Computer Technology,
Yaba College of Technology. She
holds a B.Tech in Computer Science
and currently running her Masters
degree in Computer Science. Her
research interest includes, Networking,
Machine Learning and Information
Systems.

 Ajao Aisha Omorinbola is a
Lecturer at Federal College of
Fisheries and Marine Technology. She
holds a Bsc and Msc in Business
Information System from Middlesex
University UK. Her research interest
includes Management Information

Systems, E-commerce, BIS.

