
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-6, November 2021

 https://doi.org/10.55524/ijircst.2021.9.6.60

Article ID IRPS120371, Pages 271-275

 www.ijircst.org

Innovative Research Publication 271

Pseudo-Code Attack (PCA) in Software Engineering

Sushil Bhardwaj

RIMT University, Mandi Gobindgarh, Punjab, India

Correspondence should be addressed to Sushil Bhardwaj; sushilbhardwaj@rimt.ac.in

Copyright © 2021 Sushil Bhardwaj .This is an open-access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Software development has been more

important in recent technological advancements in both

hardware and software. The creation of scripting

languages is critical to the development of software. The

development of programming languages is applicable to

software metric calculations such as line of code, code

minimization, re-usability, and so on. Various attacks

may be carried out during the metric computation phases

in order to decrease the model parameters and delay the

software package offering. Many attacks in networks

have been discovered and avoided; this Pseudo-code

assault is a new technique for boosting metric estimation

in software development. This article suggested a method

for introducing the Pseudo-code threat and detecting the

presence of the Pseudo-code assault in the code base.

Estimated size and duration are key quality assurance

metrics in software development process. Software

quality is measured by the average time between failures

and the number of defects per line of code.

KEYWORDS- Engineering, Pseudo-Code Attack,

Software, Software Development.

I. INTRODUCTION

Most software development organizations have a purpose

or ambition to create safe software that ensures the

reliability and availability of their products [1]. During

software development, defects or faults are created either

via the program's design or through its implementation.

Failures, especially vulnerabilities, increase the cost to

developers, forcing them to devote more effort to

software maintenance rather than new features. The

majority of software developers rely on testing to reduce

their maintenance costs and provide software that is

highly available and resilient [2-7]. Unfortunately, testing

focuses mostly on verifying planned functionality rather

than finding vulnerabilities.

Figure 1: Illustrates the components of Distributed Denial

of Service (DDoS) attack [8]. The attacker, via a

controller, sends various zombies to victim’s computer

In the network field, there are many Distributed Denial of

Service (DDoS) assaults as shown in Fig. 1 above [8].

The new kind of DDoS assault is the Pseudo-code Attack

(PCA). In the software development process, a Pseudo-

code attack is conceivable. The Pseudo-code assault in

DDOS is discussed in this article. These assaults aim to

decrease system performance in order to produce a

deterioration of system characteristics that are otherwise

normal. DDOS hinders software development from being

used as planned. Network-based DOS assaults are

widespread, and they aim to deplete the system's

resources. Source code that does not release a system

resource on a regular basis may be investigated in a

similar way, resulting in resource consumption. The

software development cycle as shown in Fig. 2, is

primarily concerned with the creation of fresh and novel

software for the benefit of society. When the software

team creates a new version, the revision is added to the

programs based analysis. The number of read and write

costs in the new version are calculated using this

functional point analysis. It will also be compared against

the previous version in order to determine the new

version's quality. If the estimated cost is less than or

equivalent to the previous version, the program will be

released [9-13].

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 272

Figure 2: Illustrates the different phases in development

lifecycle of software [14]

As a result, the Pseudo-code exploit has emerged as a

new kind of DDoS assault. This attack is placed in the

main memory automatically. The newly produced

segment script will be inserted and relocated to the old

code whenever the programs based analysis calls. As a

consequence, the amount of read & write actions on

memory increases. This procedure will result in the Full

Function Points (FFP) being shown at a higher cost. As a

result, the freshly created section is placed on hold until it

is ready for release, and the development state evolves

once again. As a result, software releases are delayed.

This program code is not a malware or any other kind of

virus. As a result, no antivirus detection program can

identify it.

II. DISCUSSION

A. Consequences of Pseudo-Code Attack (PCA)

The assaults are stored in the memory space as Pseudo-

code. It has a variety of effects on the system's

performance. The system operations vary from their

regular functioning process when a Pseudo-code assault

occurs. The following are the consequences of a Pseudo-

code assault. Because the PCA is placed in the system

memory, it lowers server performance. As a result, the

cost of full operational Points rises. The Pseudo-code

consumes extra memory on the system. As a result, the

disk storage capacity is enhanced. As a result, this assault

slows down the system's disk drive and creates reading

delays [15-19].

B. Issues and Challenges in Research

Designing software safety standards is complex and

fraught with problems, which adds to the complexity of

doing so [20]. The following are some of the current

problems and challenges in software development:

1) Security is Always Evolving

The method for creating requirements should be accurate

and straightforward. As a result, future security needs

should include study into a new kind of software danger.

2) In A Positive Tone, the Security Needs should be

State

Security mechanisms are often stated in a negative tone,

making accuracy and reliability more challenging. A

negative criterion, for example, might be "The software

must not enable remote exploitation", which is difficult to

verify. Validating and confirming that requirement may

need testing what the program cannot do rather than what

the system should accomplish.

3) Security is Continually Changing

The method for creating requirements should be accurate

and transparent. As a result, future security needs should

be researched to get expertise into a new kind of software

danger.

4) The Safety Criteria for Creating Software Ought to

be Agnostic of Operating System and Programming

Language

When a method is linked with a certain language or

platform, it becomes less viable. Fortunately, software

specifications may be stated in a consistent tone to cover

all potential scenarios that may arise during development.

Certain of the needs will be less visible in some

languages; for example, any program that hides system

storage administration will not have criteria for failed

memory allocation attempts, and so on.

5) For the Design Process to Function, the Security

Criteria must be Verifiable and Tested

The basic concept behind prerequisites driven software

development is to create requirements that may be created

at each step of the design process. It may be verified or

tested throughout the application design testing process.

After the requirement analysis, assessment is done at each

step to ensure that the criteria of each need are met to that

stage in the history. Need testing occurs at the conclusion

of the development cycle, mostly during test phase, and

ensures that the requirement has been included. For it to

be possible to monitor the progress of a security need

throughout the design phase, and test to ensure the criteria

was integrated into the software design, it must be

simultaneously verifiable and testable.

6) Some Security Software Criteria, but Not All, May

be Required for a Development

Anything from memory space to cryptography will be

covered under the criteria [21]. However, certain services

may just need a portion of those security criteria. There

should be a process in place so that the privacy needs for

a development may be chosen depending on the non-

security requirements. Many problems arise during

software development as a result of these types of

assaults. A suitable model has to be created in order to

design safe and scalable software. The study aims on

creating a model depending on the Cosmic Full Function

Points (CFFP) and energy point analysis to address these

problems. It reduces the number of unnecessary read and

write activities on the system. Using these methods, a

susceptible DDoS assault may be avoided while the

program is being developed.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 273

C. Micro-Motivation

In the software design lifecycle, software sizing as well as

energy points are used and the research problems along

with obstacles associated with software scaling is also

addressed.

1) Software Sizing

In order to provide a reliable software cost estimate, it is

necessary to determine the size of the program [22]. As a

result, choosing the best technique for estimating size is

crucial. In most instances, the estimation risk is

determined by exact size estimations rather than any other

cost-based criterion. Given the inherent uncertainties in

size estimate, it is critical that software sizing be done as

precisely and consistently as feasible. However, software

scaling is difficult for a variety of reasons. It is carried out

in a variety of situations, some with extensive

understanding of the system and others with little or no

expertise. There are many options for the architecture and

language that will be used to express the concept and

specifications.

In most cases, software initiatives consist of a mix of

repurposed, new, and enhanced techniques. Even when

the change and reuse actually occur in the specifications

and development rather than simply in the program code,

a sizing approach must be able to incorporate all three

stages. Measures for software sizing to create appropriate

comparisons inside or between systems, software sizing

metrics are used to standardize the other measurements.

Without a size metric, productivity figures cannot be

computed. Any software measuring application must have

a size measure. The frequent usage of size measure

during cost and schedule estimate is likely; nevertheless,

there are numerous other potentially valuable uses, such

as achieved value, vulnerability analysis, change

management, and progress monitoring.

2) Energy Points

The majority of system programs and equipment

developers are focused on addressing issues with the least

amount of storage space and the fastest possible

performance [23]. However, the usage of energy for

processing is becoming more of a problem. The following

are some of the measures that may be taken to reduce

energy points in application development:

• Use shared servers to run numerous applications.

• Fewer logs.

• Compile interpreted languages.

• Delete historical data.

• Reduce the amount of data that is translated between

components.

D. Challenges and Issues in Research

For a variety of reasons, software sizing and the software

energy point process encounter many difficulties in

obtaining an exact and appropriate estimate [24]. The

estimate process in nature is not easy, especially with

insubstantial goods, since software is insubstantial. One

of the most challenging aspects of software sizing is

obtaining the data necessary to validate the utility of any

proposed models, metrics, or functional sizing methods.

The majority of software scaling methods relied on tiny

amounts of data. Some of the methods, for example, use

30 UML files to calculate the size and cost. As a

consequence, the resulting method in this circumstance is

unreliable and cannot be generalized. In the estimate

process, there is a problem with maintaining the

appropriate and correct dataset to test any sizing methods,

measurements, or cost models.

As a consequence, there is a genuine issue with

improving the software estimating process. The structure

of the development cycle, in which all software needs are

understood, as well as the problem of requirement creep,

the connection between cost variables, and how each

element may influence the software sizing outcome.

Another issue is that there are no clear guidelines or

standards for the entire application design process. It's

now in the ad-hoc phase and is therefore not bound by

any standards. Presently, the operational size estimation is

done by hand, which takes a long time. Attempts to

automate functional size measuring methods have been

made in order to boost productivity and minimize the risk

of human mistake. To complete the research gap analysis,

it is essential to identify tool suppliers. As a result, the

planned study cantered on creating a method for safe

application development that is dependent on CFFP

energy points.

E. Suggested Technique for Energy Point Calculation

There are two types of measures: direct and indirect.

Price, line of coding, performance, memory capacity, and

frequency of mistakes are all direct measurements.

Function, reliability, sophistication, effectiveness, and

dependability are examples of indirect measurements.

These metrics are also impacted in the software building

process by DoS attacks via micro-motivation. The energy

point may be used to detect this kind of assault at the

software project level. The functional point is used to

determine the energy point. The functional point is

critical in determining the software's quality. The

developed program is divided into parts, with each

module being used to calculate energy.

This study is primarily concerned with the transition from

energy to a functioning state. In terms of functionality,

designed subsystems are the primary suppliers. The

entrance, exit, read, and write operations of the modules

are identified using functional point assessment. The

outcome is a numerical number that is used to calculate

the energy point. The read and write energy in designed

subsystems is calculated using energy points. These read

and write energies are utilized to determine whether or

not a pseudo-code DDoS assault is present in the

programs. The energy point computation is analyzed

using MCRose CFFP analysis. The modules are sent to

MCRose in real-time, and the energy computations are

based on the entrance, exit, and amount of read or write

functionality.

1) Joulemeter

The Joulemeter calculates the energy consumption of a

virtual machine, computer, or piece of application by

monitoring the system resources like memory usage, CPU

usage, disk usage, and so on, and translating the resource

use to true power consumption using intelligently trained

authentic energy models. In datacentres, client

computing, and application development, a Joulemeter

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 274

may be utilized to get insight into energy consumption

and to make various power allocation and provisioning

choices.

Figure 3: Illustrates the Joulemetre showing power

consumption statistics [25]

IT managers who control power management settings, PC

users who want fine-grained insight into their computing

energy consumption, and hobbyist developers who want

to utilize power measurer to optimize their application

and hosted application architecture for energy use will all

benefit from the technique. In a variety of situations, the

Joulemeter modelling tool may be employed to reduce

power use. The ability to monitor VM power enables

power planning methods for virtual datacenters to be

developed. Monitoring and analyzing PC sleep, coupled

with remote awakening, enables corporate buildings to

optimize desktop power usage. It is possible to separate

the effect of physical components on battery life. Users

may trade off power optimization parameters to extend

battery life, and programmers can make suitable design

trade for their program. The picture of the Joulemeter is

shown in Fig. 3 above. The Joulemeter's read/write

energy calculations may be adopted to determine whether

or not there are any pseudo-coding assaults in the system.

III. CONCLUSION

Amongst the numerous risks to networking

infrastructures, DDoS assaults have grown to represent a

significant danger to the accessibility, availability, and

functioning of several internet dependent services.

According to recent studies, hundreds of similar assaults

are attempted every week, inflicting significant harm to

both government and commercial websites. A novel

method for detecting and preventing DDoS is presented

in this paper. Pseudo-code assaults, which may be

detected with a Joulemeter, are also important in software

development process to combat DDoS attacks.

REFERENCES

[1] Hussein M, Nouacer R, Radermacher A, Puccetti A,

Gaston C, Rapin N. An end-to-end framework for safe

software development. Microprocess Microsyst. 2018;

[2] Sawant AA, Bari PH, Chawan P. Software Testing

Techniques and Strategies. J Eng Res Appl. 2012;

[3] Singh AP, Chandak S, Agarwal A, Malhotra A, Jain A,

Khan AA. Utility of High-Resolution Sonography for

Evaluation of Knee Joint Pathologies as a Screening Tool.

J Diagnostic Med Sonogr. 2021;

[4] Mahat RK, Panda S, Rathore V, Swain S, Yadav L, Sah

SP. The dynamics of inflammatory markers in coronavirus

disease-2019 (COVID-19) patients: A systematic review

and meta-analysis. Clinical Epidemiology and Global

Health. 2021.

[5] Maini E, Venkateswarlu B, Maini B, Marwaha D. Machine

learning–based heart disease prediction system for Indian

population: An exploratory study done in South India. Med

J Armed Forces India. 2021;

[6] Aliya S, Kaur H, Garg N, Rishika, Yeluri R. Clinical

Measurement of Maximum Mouth Opening in Children

Aged 6-12. J Clin Pediatr Dent. 2021;

[7] Matreja PS, Kaur J, Yadav L. Acceptability of the use of

crossword puzzles as an assessment method in

pharmacology. J Adv Med Educ Prof. 2021;

[8] Igbe O, Ajayi O, Saadawi T. Denial of service attack

detection using dendritic cell algorithm. In: 2017 IEEE 8th

Annual Ubiquitous Computing, Electronics and Mobile

Communication Conference, UEMCON 2017. 2017.

[9] Iyer M, Tiwari S, Renu K, Pasha MY, Pandit S, Singh B, et

al. Environmental survival of SARS-CoV-2 – A solid

waste perspective. Environ Res. 2021;

[10] Gupta S, Mishra T, Varshney S, Kushawaha V,

Khandelwal N, Rai P, et al. Coelogin ameliorates

metabolic dyshomeostasis by regulating adipogenesis and

enhancing energy expenditure in adipose tissue. Pharmacol

Res. 2021;

[11] Prakash P, Radha, Kumar M, Pundir A, Puri S, Prakash S,

et al. Documentation of commonly used ethnoveterinary

medicines from wild plants of the high mountains in shimla

district, himachal pradesh, india. Horticulturae. 2021;

[12] Catlos EJ, Perez TJ, Lovera OM, Dubey CS, Schmitt AK,

Etzel TM. High-Resolution P-T-Time Paths Across

Himalayan Faults Exposed Along the Bhagirathi Transect

NW India: Implications for the Construction of the

Himalayan Orogen and Ongoing Deformation.

Geochemistry, Geophys Geosystems. 2020;

[13] Agarwal A, Agarwal S. Morbid Adherent Placenta Score:

A Simple and Practical Approach on Application of

Placenta Accreta Index. Journal of Ultrasound in Medicine.

2021.

[14] Malik S, Nigam C. A Comparative study of Different types

of Models in Software Development Life Cycle. Int Res J

Eng Technol. 2017;

[15] Agarwal A, Raj Singh M, Joon P. Sonourethrography With

Pharmaco-Penile Doppler in Penile Fractures: A Complete

and Productive Imaging Combination. J Diagnostic Med

Sonogr. 2021;

[16] Agarwal S, Agarwal A, Chandak S. Role of placenta

accreta index in prediction of morbidly adherent placenta:

A reliability study. Ultrasound. 2021;

[17] Yadav A, Maini B, Gaur BK, Singh RR. Risk Factors for

Serum Bilirubin Rebound After Stopping Phototherapy in

Neonatal Hyperbilirubinemia. J Neonatol. 2021;

[18] Bishnoi S, Huda N, Islam SMU, Pant A, Agarwal S,

Dholariya R. Association between psychological status and

functional outcome in surgically managed fractures around

hip in geriatric patients-a prospective study. Malaysian

Orthop J. 2021;

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 275

[19] Wani AM, Rastogi R, Pratap V, Ashraf O, Neha.

Comparative role of ultrasonography and magnetic

resonance imaging in evaluation of biliary tract anomalies

and pericholecystic adhesions in patients with gall bladder

stone disease. J Int Med Sci Acad. 2021;

[20] Wong WE, Gidvani T, Lopez A, Gao R, Horn M.

Evaluating software safety standards: A systematic review

and comparison. In: Proceedings - 8th International

Conference on Software Security and Reliability -

Companion, SERE-C 2014. 2014.

[21] Vidas T, Larsen P, Okhravi H, Sadeghi AR. Changing the

Game of Software Security. IEEE Security and Privacy.

2018.

[22] Wilkie FG, McChesney IR, Morrow P, Tuxworth C, Lester

NG. The value of software sizing. Inf Softw Technol.

2011;

[23] Saini M, Kaur K. A review of open source software

development life cycle models. Int J Softw Eng its Appl.

2014;

[24] Vatsa A, Kumar S. Software Production Issues and

Mitigation Techniques: A review. Int J Recent Res Asp.

2016;

[25] Find PC Power Consumption.

