

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-1, January 2022

 https://doi.org/10.55524/ijircst.2022.10.1.10

Article ID IJIRD-1154, Pages 59-65

 www.ijircst.org

Innovative Research Publication 59

Improvisation of Round Robin Algorithm

Aishna Gupta1, and Patil Darshan Rajkumar2

1,2 Student, Department of Computer Science and Engineering. Vellore Institute of Technology, Vellore, India

Correspondence should be addressed to Aishna Gupta; darshofficial18@gmail.com

Copyright © 2022 Aishna Gupta et al. This is an open-access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- We are trying to improvise the existing

Round Robin Algorithm and test its performance across

host OS and VM as well. We would be testing the

performance of the improvised algorithm on the Cent OS

running on Virtual Box..

We have worked on the scheduling algorithm specifically

Round Robin Scheduling in our lab classes. Basically, we

will be finding out the best way to properly select the “Time

Quantum” so as to get Minimum ‘Waiting Time’ and

‘Turnaround Time’.

After looking into so many research papers, we have found

that, by sorting the processes in increasing order of their

burst time and taking median of all the burst time, we can

minimize the waiting and turnaround time.

KEYWORDS- Round Robin, Cent OS, Waiting Time,

Time Quantum, Turnaround Time.

I. INTRODUCTION

When we look around and count how many electronic

devices we can see from our current point of view, we

probably have numerous devices just within our current

eyesight. In order for many of those devices to work, they

have some sort of operating system (OS) that allows them

to boot up and provide whatever experiences they have to

offer[1]. In fact, if you are reading the digital version of this

report, the very device you are now holding has an

operating system of its own.

II. SCHEDULING ALGORITHM

The Central Processing Unit (CPU) should be utilized

efficiently as it is a core part of Computers and for this

reason, CPU scheduling is very necessary. CPU Scheduling

is an important concept in Operating System. Sharing of

computer resources between multiple processes is called

scheduling. A process is an instance of a program running

on a computer[2]. It includes the current values of the

program counters, all the registers, and also the variables.

The processes waiting to be assigned to a processor are put

in a queue called the ready queue. Burst time is amount of

time for which a process is being held by the CPU. When a

process arrives at the ready queue it is the arrival time.

From the time a process is submitted, the time it is

completed is called the turnaround time. When a process

waits in the ready queue, the time is called the waiting time.

The number of times the CPU gets switched from one

process to another, it is called context switching[3]. The

optimal and the best scheduling algorithm will have less

waiting time, less turnaround time and a smaller number of

context switches.

Figure 1: Operating System Framework

In Figure 1, Hardware is a framework comprising of

electronic gadgets, intended to cooperate as a solitary unit.

Firmware is a program that is explicitly intended to work

with specific equipment and it lives in non-unstable

memory such a blaze and it is executed straightforwardly

from it. An operating system is a program that abstracts the

hidden programming determined to work on the

effectiveness and usability both for the end-clients and

application software engineers. Middleware is a PC

program that interfaces 2 programming together. The 2

programming that requirement to interface can be in a

similar machine or in 2 machines in a similar room or it

tends to be in 2 corners of the world. Software is a program

that can chip away at a wide variety of equipment and they

are generally replicated from non-unpredictable memory

(like hard-plate or SSD) onto unstable memory (like SRAM

and DRAM) before they can begin executing.

Objectives of Process Scheduling algorithm:

 Maximum CPU utilization.

 Fair allocation of CPU.

 Achieve the maximum throughput (Number of

processes that complete their execution per time unit).

 Minimize the turnaround time (Time taken by a

process to finish execution).

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 60

 Minimize the waiting time (Time a process waits in

ready queue).

 Minimize the response time (Time when a process

produces first response).

III. LITERATURE SURVEY

Authors Name of the Paper Outcomes

Emami Ale

Agha et al.[6]

A New Method to

Improve Round

Robin Scheduling

Algorithm with

QuantumTime Based

on

HarmonicArithmetic

Mean

Quantum

Time Based on

Harmonic-

Arithmetic

Mean.

Mohan et al.[7] Robust Quantum

Based Low-power

Switching Technique

to improve System

Performance

Low-power

Switching

Technique

Helmy et al.[8] Burst Round Robin

as a Proportional-

Share Scheduling

Algorithm

Proportional-

share CPU

scheduling,

Quality of

Services and

Performance

Management.

 Manoj Kumar

Srivastav et al.

[9]

Fair Priority Round

Robin with Dynamic

Time Quantum:

FPRRDQ

Fair value of

time quantum

to each

process

according to

the priority

and burst time

of that

process.

Behera et

al.[10]

A New Proposed

Two Processor

Based CPU

Scheduling

Algorithm with

Varying Time

quantum for Real

Time Systems

Context

Switches,

Waiting Time,

Turnaround

time

IV. PROJECT RESOURCE REQUIREMENTS

A. Software Requirements

 Any version of Windows, preferably Windows 11.

 C-compiler.

 Command Prompt.

 Jupyter Labs.

 Ubuntu on VirtualBox host.

B. Hardware Requirements

 Laptop/Computer.

 1.8GHz CPU.

 I3 Processor.

 4GB RAM.

V. ROUND ROBIN ALGORITHM

In Round Robin Algorithm, each process is allowed to use

the CPU for a given amount of time and if it does not finish

within the allotted time, it is pre-empted and then moved at

the back of the line so that the next process in line is able to

use the CPU for the same amount of time.[4]

A. Algorithm for Round Robin Algorithm

 Start.

 Enter the number of process and Time Quantum.

 Enter the Arrival Time and Burst Time for all the

process.

 Using for loop parse through all the process.

 If(burst-time<quantum-time), then execute the

process.

 Else, execute the process till the quantum-time and

continue to the next process.

 Now calculate the Average waiting time, average

turnaround time and total Number of context switches

required for the process.

 End.

B. Schematic Representation of Round Robin

Algorithm

From the Fig. 2, we have calculated the following

values:

Time Quantum: 3ms

Average Waiting Time=11ms

Average Turnaround Time=15.2ms

Context switch: 9

Figure 2: Gantt Chart

0 P1 3 3 P2 6 6 P3 8 8 P4 11 11 P5 14 14 P1 16 16 P2 17 17 P4 20 20 P4 21

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 61

VI. FLOWCHART

Figure 3: Flowchart of working of Round Robin Algorithm

The Figure.3 explains the working of round robin

algorithm. Once the user enters the number of processes,

quantum time, arrival time and burst time, if BT<TQ then

execute the process till completion else execute it for the till

quantum time and continue to the next process. Then

calculate the required entities and terminate the process.

VII. CODE

#include<stdio.h>

int main()

{

 int count, j, n, time, remain, flag=0, time_quantum, x=0;

 int wait_time=0, turnaround_time=0, at[25], bt[25], -

 rt[25];

 printf("Enter Total Process:\t ");

 scanf("%d",&n);

 remain=n;

 for(count=0;count<n;count++)

 {

 printf("Enter Burst Time for Process Process Number

 %d :",count+1);

 scanf("%d",&bt[count]);

 at[count]=0;

 rt[count]=bt[count];

 }

printf("Enter Time Quantum:\t");

scanf("%d",&time_quantum);

printf("\n\nProcess\t|TurnaroundTime|Waiting

Time\n\n");

for(time=0,count=0;remain!=0;)

 {

 if(rt[count]<=time_quantum&& rt[count]>0)

 {

 time+=rt[count];

 rt[count]=0;

 flag=1;

 }

 else if(rt[count]>0)

 {

 rt[count]-=time_quantum;

 time+=time_quantum;

 x++;

 }

 if(rt[count]==0 && flag==1)

 {

 remain--;

 printf("P[%d]\t|\t%d\t|\t%d\n",count+1,time-

 at[count],time-at[count]-bt[count]);

 wait_time+=time-at[count]-bt[count];

 turnaround_time+=time-at[count];

 flag=0;

 x++;

 }

 if(count==n-1)

 count=0;

 else if(at[count+1]<=time)

 count++;

 else

 count=0;

 }

printf("\nAverage Waiting Time= %f\n",wait_time*1.0/n);

printf("Average Turnaround Time =

%f",turnaround_time*1.0/n);

printf("\nContext Switching=%d",x);

 return 0;

}

VIII. OUTPUT ON JUPYTER LABS

Figure 4: Output of Round Robin Algorithm

In Figure.4 we obtained the output of Round Robin

Algorithm by running the code in Jupyter Labs. User has

entered 5 processes with its burst time and time quantum

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 62

value. Our code has calculated the waiting time, and

turnaround time.

IX. DRAWBACKS

 The efficiency of the system is decreased if the

quantum value is low as frequent switching takes

place.

 The system may become unresponsive if the quantum

value is high.

X. IMPROVISED VERSION OF ROUND ROBIN

ALGORITHM

We are trying to improvise the classical Round Robin

Algorithm. In this, we will sort the processes in increasing

order of their Burst Times. For selection of Time Quantum,

we will use the formula TQ=ceil (sqrt (median*highest

Burst Time)) [5]. By using this Time Quantum, we can

achieve Minimum Waiting and Turnaround Time.

A. Algorithm for Improvised version Round Robin

Algorithm

 Start.

 Sort all the processes in increasing order, according to

their burst time.

 While (ready queue! = NULL) Find Time-Quantum,

where Time-Quantum=Ceil (sqrt (median * highest

Burst time)).

 Assign Time-Quantum to process.

 Now, follow the same steps as followed in round robin

method.

 Now calculate the Average waiting time, average

turnaround time and total Number of context switches

required for the process.

 End.

B. Schematic Representation of Improvised Version of

Round Robin Algorithm

Table 1: Representation of processes and its Burst time

Process Burst Time

P3 2

P5 3

P2 4

P1 5

P4 7

In Table 1, we have sorted number of processes in

increasing order of their burst time.

C. Gantt Chart

Table 2: Gantt Chart

0

P3

2

2 P5 5

5 P2 9

9P1 14

14 P420

20

P421

Table 2 represents the Gantt chart of the inputs and by using

the above Gantt chart we have calculated following values:

Time Quantum=6ms

Average Waiting Time=6ms

Average Turnaround Time=10.2ms

Context switch: 6

D. Flowchart of Improvised version of Round Robin

Algorithm

Figure 5: Flowchart of Improvised version of Round Robin

Algorithm

In the Figure 5, we have summarized the working of

Improvised version of Round Robin Algorithm. Once the

process starts, sorting of processes are done in increasing

order of their burst time and then time quantum value is

calculated by using the special formula. Once time quantum

value is assigned to the processes, average waiting time,

turnaround time, and context switch value is calculated.

E. Code

#include<stdio.h>

#include<math.h>

//Iniatilization

int st[10],x=0;

//Function for Finding Time Quantum

int get_tq(int b[] , int s)

{

int i,j,maxbt,tmp,hbt,median;

float k,l,m;

//Sorting the process according to process Burst Times

for(i=0;i<s;i++)

{

for(j=i+1;j<s;j++)

{

if(b[i]>b[j])

{

tmp=b[i];

b[i]=b[j];

b[j]=tmp;

}

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 63

}

}

hbt=b[i-1];

median=b[i/2];

 for(i=0;i<s;i++)

 st[i]=b[i];

 l=(float)hbt;

 m=(float)median;

 k=sqrt((l*m));

 return(ceil(k));

}

//Main Function

int main()

{

int bt[10],wt[10],tat[10],n,tq;

int i,count=0,swt=0,stat=0,temp,sq=0;

float awt=0.0,atat=0.0;

printf("Enter the Number of Processes: ");

scanf("%d",&n);

//Getting Burst Time for all sequences

 printf("Enter the Burst Time for all the Sequences:\n");

 for(i=0; i<n; i++)

 {

scanf("%d",&bt[i]);

st[i]=bt[i];

 }

tq=get_tq(st, n);

printf("\nTime quantum is ceil ((Highest Burst Time +

Median)/2) = %d\n",tq);

//Working like Round Robin Algorithm

while(1)

{

 for(i=0, count=0; i<n; i++)

{

temp=tq;

if(st[i]==0)

{

 count++;

continue;

x++;

}

 if(st[i]>tq)

 {

 st[i]=st[i]-tq;

 x++;

 }

else

if(st[i]>=0)

{

temp=st[i];

st[i]=0;

x++;

}

 sq=sq+temp;

 tat[i]=sq;

}

 if(n==count)

 break;

}

for(i=0; i<n; i++)

{

wt[i]=tat[i]-bt[i];

swt=swt+wt[i];

stat=stat+tat[i];

}

awt=(float)swt/n;

atat=(float)stat/n;

printf("\nAverage Waiting Time is %f\n",awt);

printf("\nAverageTurnAround Time is %f\n",atat);

printf("\nContext Switching=%d",x);

}

F. Output on Jupyter lab

Figure. 6: Output of Improvised version of Round Robin Algorithm

In Figure 6, we have obtained the output of Improvised

version of Round Robin Algorithm by running the code in

Jupyter Labs. User have entered 5 processes with its burst

time. Our code has first calculated the Time Quantum value

by using the formula as printed on Figure. 6, and then

waiting time, and turnaround time are calculated.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 64

G. Improvement in Various Parameters

Table 3: Improvements in Various Parameters

From Table 3 we can conclude that:

 If the % change in Time quantum is greater than 35%

but less than 45%, then there is great improvement.

 If the % change in Time quantum is greater than 45%

but less than 70%, then there is less improvement.

 If the % change in Time quantum is greater than 70%

then there is no improvement.

H. Executing Round Robin Algorithm on Ubuntu using

Virtual Box

Figure. 7: Output of Round Robin Algorithm on Ubuntu

In Figure. 7, we have printed the output of Round Robin

Algorithm on Ubuntu to just make sure that our code works

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 65

on Ubuntu environment too.

I. Executing Improvised version of Round Robin

Algorithm

Figure 8: Output of Improvised version of Round Robin

Algorithm on Ubuntu

In Figure. 8, we have printed the output of Improvised

version of Round Robin Algorithm on Ubuntu to just make

sure that our code works on Ubuntu environment too.

XI. CONCLUSION

Classical Round Robin Algorithm will be improvised using

the above techniques. We used C-programming to improve

the Round Robin Algorithm. We require the basics of Data

Structures and Algorithm.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

ACKNOWLEDGMENT

This paper and the research behind it would not have been

possible without the exceptional support of each other. Our

enthusiasm, knowledge and exacting attention to detail have

been an inspiration and kept our work on track to the final

draft of this paper.

REFERENCES

[1] Rami J. Matarneh. Self-Adjustment Time Quantum in Round

Robin Algorithm Depending on Burst Time of Now Running

Processes, American J. of Applied Sciences 6(10): 1831-

1837, 2009.

[2] H.S. Behera, Rakesh Mohanty, Debashree Nayak. A New

Proposed Dynamic Quantum with Re-Adjusted Round Robin

Scheduling Algorithm and Its Performance Analysis ,

International Journal of Computer Applications, Vol. 5, no. 5,

August 2010.

[3] Helmy, T. and A. Dekdouk, 2007. Burst Round Robin as a

Proportional-share Scheduling Algorithm, IEEEGCC,

http://eprints.kfupm.edu.sa/1462.

[4] Pallab banerjee, probal banerjee, shweta sonali

dhal. Comparative Performance Analysis of Average Max

Round Robin Scheduling Algorithm (AMRR) using Dynamic

Time Quantum with Round Robin Scheduling Algorithm

using static Time Quantum, IJITEE,ISSN: 2278-3075,

Volume-1, Issue-3, August 2012.

[5] BC Carlson. Algorithms involving arithmetic and geometric

means, Amer. Math. Monthly 78 (1971), 496–505. MR

0283246.

[6] Emami Ale Agha, Ashkan & Jafarali Jassbi, Somayyeh.

(2013). A New Method to Improve Round Robin Scheduling

Algorithm with Quantum Time Based on Harmonic-

Arithmetic Mean (HARM). International Journal of

Information Technology and Computer Science. 5.

10.5815/ijitcs.2013.07.07.

[7] Mohan, Lavanya & Siva, Saravanan. (2013). Robust

Quantum Based Low-power Switching Technique to improve

System Performance. International Journal of Engineering

and Technology. 5. 3634-3638.

[8] Helmy, Tarek & Dekdouk, Abdelkader. (2007). Burst round

robin as a proportional-share scheduling algorithm.

[9] Manoj Kumar Srivastav, Sanjay Pandey, Indresh Gahoi and

Neelesh Kumar Namdev. “Fair Priority Round Robin with

Dynamic Time Quantum : FPRRDQ.” (2012).

[10] Behera, Himanshu Sekhar, P Jajnaseni, Dipanwita Thakur

and Subasini Sahoo. “A New Proposed Two Processor Based

CPU Scheduling Algorithm with Varying Time quantum for

Real Time Systems.” Journal of Global Research in

Computer Sciences 2 (2011): 81-87.

ABOUT THE AUTHORS

 Aishna Gupta, Bachelor of Technology

in Computer Science and Engineering with

specialization in Bioinformatics in Vellore

Institute of Technology, Vellore.

 She has published 4 papers in

International Journals

 Patil Darshan Rajkumar, Bachelor of

Technology in Computer Science and

Engineering with specialization in

Bioinformatics in Vellore Institute of

Technology, Vellore.

 He has published 3 review papers in

International Journals and 1 review paper

published in conference proceedings.

