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ABSTRACT:  It is a notable actual peculiarities when a 

permeable media is totally immersed with a non-wetting 

liquid. For instance, water is brought into contact. The last 

option will more often than not precipitously stream into 

the medium, dislodging the non-wetting liquid. In this 

paper, we utilize indispensable personalities with 

intersecting hyper-mathematical series to address the 

progression of two immiscible fluids in a broke permeable 

medium.  The methodology adopted for the solution is 

followed by transform of non-linear differential system 

into an ordinary differential equation. Subsequently 

obtained equation is convert into diffusion equation by 

applying similarity variable by standard transformation 

and further transfer into the confluent hyper geometric 

equation.  The acquired arrangement as far as intersecting 

hyper mathematical series give an articulation for wetting 

stage immersion. The outcomes exhibit the straightforward 

examination to acquire a scientific arrangement of the non-

direct differential condition of imbibitions peculiarity 

under extraordinary condition in a broke permeable media 

wherein the water infiltrating the crease along the broke is 

sucked into the squares of rock under the activity of 

hairlike powers and how much water entering the square 

in the rudimentary volume. 

 

KEYWORDS: Capillary Forces, Confluent Hyper 

Geometric Series, Cracked Porous Media, Diffusion 

Equation, Imbibitions Phenomenon, Non-linear 

Differential Equation. 

I. INTRODUCTION 

When a porous medium is completely saturated with a 

non-wetting fluid, such as water, it is a well-known 

physical fact that. The later will tend to flow spontaneously 

into the medium displacing the non-wetting fluid. Such 

phenomena named as imbibitions phenomena and it has 

been discussed by BROWSCOMBE and DYES 

(1952)[1]–[3], From an analytical standpoint, GRAHAM 

has looked at two unique oil-water displacement processes. 

We've looked at it from an analytical standpoint in this 

chapter [4], [5]. The non-linear differential system is 

transformed into an ordinary differential equation and then 

convert it into diffusion equation by applying similarity 

variable which is further by standard transformation; 

transformed into confluent hyper geometric equation and 

its solution is obtain in terms of confluent hyper geometric 

series which gives an appearance for wetting phase 

saturations. 

A. Declaration of the problems 

Consider a semi-limitless length round and hollow piece of 

oil-immersed cracked permeable material. Which is 

verged on three sides by impermeable surfaces and is open 

and presented to a close by water arrangement. The 

peculiarity of straight counter current imbibition is brought 

about by this arrangement. A few standard outcomes for 

the connection between relative penetrability and stage 

immersion, impregnation work, oil-water consistency 

proportion, and hairlike tension reliance on stage 

immersion are accommodated clearness.  

The fundamental premium of the current examination is to 

acquire a scientific arrangement of the non-straight 

differential condition of imbibitions under extraordinary 

state of our problem.  

B. Flow in cracked media 

In a broke permeable media water infiltrating the crease 

along the broke is sucked into the squares of rock under the 

activity of hairlike powers and how much water entering 

the square in the rudimentary volume of crease is assigned 

as the impregnation work ∅(t),where t indicates the time 

[6]–[8]. 

Consider the equilibrium of water sucked into the squares 

of rock per unit time and emploing the consequence of 

MATTAX and KYTE [9], [10], VAZIROV, for the 

insightful worth of ∅ we might compose  

 

    ∅|𝑇 − 𝜏(𝑢)| = [𝐷/(𝑇 −

𝑅𝑥2)
3

2]                                                                      (1) 

 

 𝑇 = 𝑡 (
𝛿𝑐𝑜𝑠𝜃 𝑆2 √

𝑘

𝑚𝐵

𝑉0
) 

𝐷 =
𝐴

2
𝑚𝐵𝑞𝑘 (𝛿𝑐𝑜𝑠𝜃 + 𝑆

2√
𝑘

𝑚𝑏

) 

𝑅 =
1

𝐿𝑀
2 (

𝜋

4𝑞
𝑆2𝑐𝑜𝑠𝜃𝑚𝐵𝑔𝑘√

𝑘

𝑚𝐵

) 

Where     𝑚𝐵=   porosity of the blocks  

     𝑔𝑘   =   Saturation of the block with water 𝑡 = 𝑡𝑘 
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   𝑆  = Mean exact surface area of the blocks  

  𝜃𝑛 = wetting angle 

  𝑉0  = oil viscosity  

 𝑉𝑤 = the viscosity of water  

 𝐾 = the permeability of the crack system  

 𝐴  = constant coefficient  

 𝐿𝑚  =Mean block size  

𝑞   = the consistent pace of conveyance of water per unit 

surface region opposite to the heading of water 

 It may be mentioned   that we consider "𝑞" as the average 

rate of flow of water across the imbibition face and 

assumed it to be constant in the present discussion. 

II. DISCUSSION 

Formulation of the problem: 

  DARCY's regulation gives the drainage speed of water 

(V_w) and oil (V_o) as. 

𝑉𝑤 = −
𝐾𝑤
𝑉𝑤
𝑘
𝜕𝑃𝑤
𝜕𝑥

                                  (2) 

𝑉𝑜 = −
𝐾𝑜
𝑉𝑜
𝑘
𝜕𝑃𝑜
𝜕𝑥

                                      (3) 

    Since 𝑉𝑤 = −𝑉𝑜 for the imbibition phenomenon, 

therefore. From equation (2)𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 (3) we may write,  
𝐾𝑤
𝑉𝑤

𝜕𝑃𝑤
𝜕𝑥

+
𝐾𝑜
𝑉0

𝜕𝑃𝑜
𝜕𝑥

= 0                           (4) 

 Now the pressure discontinuity between the 

flowing phase[11], [12] 

 yeild the defination of capillary pressure as      

𝑃𝑐 = 𝑃𝑜 − 𝑃𝑤                                             (5) 
   

          Combining  (4)𝑎𝑛𝑑 (5),  We get,   

(
𝐾𝑤
𝑉𝑤
+
𝐾𝑜
𝑉𝑜
)
𝜕𝑃𝑤
𝜕𝑥

+
𝐾𝑜
𝑉𝑜

𝜕𝑃𝑐
𝜕𝑥

= 0              (6) 

           Substituting the value of 
𝜕𝑃𝑤

𝜕𝑥
 from (6) into (2), we 

get,  

      𝑉𝑤 =
𝐾
𝐾𝑤
𝑉𝑤

𝐾𝑜
𝑉𝑜

𝜕𝑃𝑐
𝜕𝑥

𝐾𝑤
𝑉𝑤
+
𝐾𝑜
𝑉𝑜

                            (7) 

       Following RIJIK [4], the condition of progression for 

water might be composed as, 

  𝑃
𝜕𝑆𝑤

𝜕𝑇
+

𝜕𝑉𝑤

𝜕𝑋
+  ∅[𝑇 − 𝜏(𝑢)]    =

0                                                   (8) 
    Where  ∅|[𝑇 − 𝜏(𝑢)]|  is the impregnation functions, 

substituting the value of 𝑉𝑤  and ∅[𝑇 − 𝜏(𝑢)] from 

equation (7) 𝑎𝑛𝑑 (1) into (8), We get,  

∈𝑝
𝜕𝑆𝑤

𝜕𝑇
+

𝜕

𝜕𝑋
[𝐾

𝐾𝑤𝐾𝑜

𝜗𝑜𝐾𝑤+𝐾𝑜𝜗𝑤
]
𝜕𝑃𝑐

𝜕𝑆𝑤
. 𝐷(𝑇 − 𝑅𝑥

2)−
3

2 =

0                        (9)  

Where   𝜀 =  
𝛿𝑐𝑜𝑠𝜃𝑆2√

𝐾

𝑚𝐵

𝜗𝑜
 

 Equation (9) is non-straight differential condition 

which portrays the direct counter current imbibition 

peculiarity in a broke round and hollow framework with 

the limit condition. 

𝑆𝑤(0, 𝑇) = 𝑆𝑤0:
𝜕𝑆𝑤(𝐿, 𝑇)

𝜕𝑋
= 0 

L is the half-length of a cylinder of oil-saturated cracked 

porous material. Which is surrounded on three sides by an 

impermeable surface and is open and exposed to a 

neighboring water formation. T is the above-mentioned 

function.  

 

Method of Integral Identities: 

 It is well known that 𝑃𝑐  is decreasing function of 

𝑆𝑤 (MUSKAT, 1949).  Therefore, we may write.  

 𝑃𝑐 = −𝛽𝑆𝑤  (𝑀𝑒ℎ𝑡𝑎 [12]                                             
(10)  
  Where negative sign indicates the direction of flow.  

 Also for definiteness. We assume that,  

  
𝐾𝑤𝐾𝑜

𝜗𝑜𝐾𝑤+𝐾𝑜𝜗𝑤
=

𝐾𝑜

𝜗𝑜
                           (11) 

Using(10) 𝑎𝑛𝑑 (11) 𝑖𝑛𝑡𝑜 (9), it reduce to,  

𝜀𝑝
𝜕𝑆𝑤
𝜕𝑇

+
𝜕

𝜕𝑋
[(𝐾

𝐾𝑤𝐾𝑜
𝜗𝑜𝐾𝑤 + 𝐾𝑜𝜗𝑤

) (
𝑑𝑃𝑐
𝑑𝑆𝑤

) (
𝜕𝑆𝑤
𝜕𝑋

)]

=  −𝐷(𝑇 − 𝑅𝑥
2)−

3
2  

Where   𝜀 =  
𝛿𝑐𝑜𝑠𝜃𝑆2√

𝐾

𝑚𝐵

𝜗𝑜
 

𝜀𝑝
𝜕𝑆𝑤
𝜕𝑇

+
𝜕

𝜕𝑋
[(𝐾

𝐾𝑤𝐾𝑜
𝜗𝑜𝐾𝑤 + 𝐾𝑜𝜗𝑤

) (
𝑑𝑃𝑐
𝑑𝑆𝑤

) (
𝜕𝑆𝑤
𝜕𝑋

)]

=  −𝐷(𝑇 − 𝑅𝑥
2)−

3
2  

𝜀𝑝
𝜕𝑆𝑤
𝜕𝑇

+
𝜕

𝜕𝑋
[𝐾
𝐾𝑜
𝜗𝑜

𝑑𝑃𝑐
𝑑𝑆𝑤

𝜕𝑆𝑤
𝜕𝑋

] =  −𝐷(𝑇 − 𝑅𝑥
2)−

3
2  

𝜀𝑝
𝜕𝑆𝑤
𝜕𝑇

+ 𝐾
𝐾𝑜
𝜗𝑜

𝑑𝑃𝑐
𝑑𝑆𝑤

𝜕2𝑆𝑤
𝜕𝑋2

= −𝐷(𝑇 − 𝑅𝑥
2)−

3
2 

𝜕𝑆𝑤
𝜕𝑇

+
𝛽1
𝜀𝑝 

𝜕2𝑆𝑤
𝜕𝑋2

= −
𝐷

𝜀𝑝
  ( 𝑇

− 𝑅𝑥
2)−

3
2                                        (12)  

Where  𝛽1 = −𝐾
𝐾𝑜

𝜗𝑜

𝑑𝑃𝑐

𝑑𝑆𝑤
 

Here 𝑃𝑐 is linear function of 𝑆𝑤 then 
𝑑𝑃𝑐

𝑑𝑆𝑤
 is constant. So 

that  𝛽1 is constant [13] 

Applying the similarity variable viz, 

𝑆𝑤 = [
𝐷𝐹(𝑍)

𝜆2√𝜆1𝑇
]  ,   𝑍

=
𝑋

2√𝜆1𝑇
                                                    (13) 

Where    𝜆1 =
𝛽1

𝜀𝑝
 𝑎𝑛𝑑 𝜆2 = −

𝐷

𝜀𝑝
 

The equation (12) is transformed into ordinary differential 

equation viz. 

𝐹"(𝑍) + 2𝑍𝐹′(𝑍) + 2𝐹(𝑍)

= 𝜇(1 − 4𝑅𝜆1𝑍
2)
−3

2⁄                   (14) 
𝐹(0) = 𝑆𝑤  , 𝐹

′(𝐿) = 0 

Where 𝜇 =
4𝐷√𝛽1

(𝜀𝑝)
3    and    𝜆1 =

𝛽1

𝜀𝑝
 are the small parameters. 

 Let us change the above ordinary differential 

equation into diffusion equation.  

 −
𝑑

𝑑𝑥
 [𝑃

𝑑𝜙

𝑑𝑥
] + 𝑞𝜙 = 𝑓 

−𝑃
𝑑2𝜙

𝑑𝑥2
−
𝑑𝑃

𝑑𝑥

𝑑𝜙

𝑑𝑥
+ 𝑞𝜙 = 𝑓 

𝑑2𝜙

𝑑𝑥2
+
1

𝑃

𝑑𝑃

𝑑𝑥

𝑑𝜙

𝑑𝑥
+
𝑞𝜙

𝑃

=  −
𝑓

𝑃
                                                       (15) 

         

 Now our ordinary differential equation is, 

𝑑2𝐹(𝑥)

𝑑𝑥2
+ 2

𝑑𝐹(𝑥)

𝑑𝑥
+ 2𝐹(𝑥)

= 𝜇(1 − 4𝑅𝜆1𝑍
2)−3/2                (16) 
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   𝐹(0) = 𝑆𝑤  , 𝐹
′(𝐿) = 0 

Equation (15) and (16), we obtain  

If two function are equate then we should equate just like 

it. If all the multiplier are same than we should equate and 

take it as any constant K. 
1

𝑃

𝑑𝑃

𝑑𝑥
= 2𝑐𝑥                                  𝐴𝑙𝑠𝑜 −

𝑞

𝑃
= 2𝑐 

𝑃 = 𝑒𝑐𝑥
2
                                    𝑞 = −2𝑐𝑒𝑐𝑥

2
 

The diffusion equation becomes,  
𝑑

𝑑𝑥
(𝑒𝑐𝑥

2 𝑑𝐹

𝑑𝑥
) − 2𝑐𝑒𝑐𝑥

2
𝐹(𝑋)

= −𝜇𝑒−𝑐𝑥
2
(1 − 4𝑅𝜆1𝑥

2)−3/2 
𝑑

𝑑𝑥
(𝑒𝑐𝑥

2 𝑑𝐹

𝑑𝑥
) + 2𝑐𝑒𝑐𝑥

2
𝐹(𝑋)

= 𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3
2        (17) 

With boundary condition 𝐹(0) = 0 , 𝐹(1) = 0  

Where 𝑃 = 𝑃(𝑋) = 𝑒𝑐𝑥
2
 is diffusion 

  𝑄 = 2𝑐𝑒𝑐𝑥
2
 

            𝐹 = 𝑓(𝑥) = 𝑒−𝑐𝑥
2
𝜇(1 + 4𝑅𝜆1𝑥

2)−
3

2 

            𝐹 = 𝑓(𝑥) = 𝑒−𝑐𝑥
2
𝜇(1 + 4𝑅𝜆1𝑥

2)−
3

2  is the source  

of diffusion  

Let us suppose that the functions are piecewise continuous 

with discontinuities of the first kind. We wish to find 

continuous solution of (14) Which has a differential ‘Flow 

‘.  

 𝐽 = 𝑒𝑐𝑥
2 𝑑𝐹

𝑑𝑥
 

Which is satisfies the boundary condition.  

𝐹(0) = 0 𝑎𝑛𝑑 𝐹(1) =
0                                                                                       (18)  
 Let us choose two system of net points over the 

range [0,1] of variable 𝑥.  

Now participant (𝑖) the basic system {𝑥𝑘}𝑘=0
𝑛  and (ii) the 

auxiliary system {𝑥
𝑘+

1

2

}
𝑘=0

𝑛

 

 The point from these two systems are mutually 

alternative in succession. 

𝑖. 𝑒. 𝑥𝑘 < 𝑥
𝑘+

1

2

< 𝑥𝑘+1  and 𝑥0 = 1, 𝑥𝑛 = 1  

We will assume that. 𝑥
𝑘+

1

2

= (
𝑥𝑘+𝑥𝑘+1

2
) 

Integrating (17) with respect to𝑥 𝑓𝑟𝑜𝑚 𝑥
𝑘−

1

2

 𝑡𝑜 𝑥
𝑘+

1

2

. As 

result, we obtain that the equilibrium relation. 

 

 

 

−∫
𝑑

𝑑𝑥
(𝑒𝑐𝑥

2 𝑑𝐹

𝑑𝑥
) 𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

+∫ 2𝑐𝑒𝑐𝑥
2
𝐹(𝑥)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

= −∫ 𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3
2𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 

[−𝑒𝑐𝑥
2 𝑑𝐹

𝑑𝑥
]
𝑥
𝑘−

1
2

𝑥
𝑘+

1
2 +∫ 2𝑐𝑒𝑐𝑥

2
𝐹(𝑥)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

= −∫ 𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3
2𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 

−[𝑒
𝑐(𝑥

𝑘+
1
2
)

2
𝑑𝐹 (𝑥

𝑘+
1
2
)

𝑑𝑥
− 𝑒

𝑐(𝑥
𝑘−

1
2
)

2
𝑑𝐹 (𝑥

𝑘−
1
2
)

𝑑𝑥
]

+ ∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

− 𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3
2) 𝑑𝑥 = 0 

 

     −𝐽 (𝑥
𝑘+

1

2

) + 𝐽 (𝑥
𝑘−

1

2

) + ∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥) −

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3

2) 𝑑𝑥 = 0  (19) 

Where    𝐽 (𝑥
𝑘+

1

2

) = 𝐽 (𝑥
𝑘−

1

2

) 

In order to find   𝐽
𝑘±

1

2

 , process is as follows, 

Integrating (18) with respect to 𝑥 𝑓𝑟𝑜𝑚 𝑥
𝑘−

1

2

 𝑡𝑜 𝑥 

−∫
𝑑

𝑑𝑥
(𝑒𝑐𝑥

2 𝑑𝐹(𝑥)

𝑑𝑥
)𝑑𝑥

𝑥

𝑥
𝑘−

1
2

+ ∫ 2𝑐𝑒𝑐𝜉
2
𝐹(𝜉)𝑑𝜉

𝑥

𝑥
𝑘−

1
2

= ∫ 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2𝑑𝜉

𝑥

𝑥
𝑘−

1
2

 

−(𝑒𝑐𝑥
2 𝑑𝐹(𝑥)

𝑑𝑥
)

𝑥

𝑥
𝑘−

1
2

+ ∫ 2𝑐𝑒𝑐𝜉
2
𝐹(𝜉)𝑑𝜉

𝑥

𝑥
𝑘−

1
2

= ∫ 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2𝑑𝜉

𝑥

𝑥
𝑘−

1
2

 

−(𝑒𝑐𝑥
2 𝑑𝐹(𝑥)

𝑑𝑥
) + (𝑒

𝑐𝑥
𝑘−

1
2

2 𝑑𝐹 (𝑥
𝑘−

1
2
)

𝑑𝑥
)

+ ∫ 2𝑐𝑒𝑐𝜉
2
𝐹(𝜉)𝑑𝜉

𝑥

𝑥
𝑘−

1
2

= ∫ 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2𝑑𝜉

𝑥

𝑥
𝑘−

1
2

 

−(𝑒𝑐𝑥
2 𝑑𝐹(𝑥)

𝑑𝑥
) + (𝑒

𝑐𝑥
𝑘−

1
2

2 𝑑𝐹 (𝑥
𝑘−

1
2
)

𝑑𝑥
)

+ ∫ 2𝑐𝑒𝑐𝜉
2
𝐹(𝜉)𝑑𝜉

𝑥

𝑥
𝑘−

1
2

−∫ 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2𝑑𝜉

𝑥

𝑥
𝑘−

1
2

= 0 

𝑒𝑐𝑥
2 𝑑𝐹(𝑥)

𝑑𝑥
= 𝐽

𝑘−
1
2

+∫ (2𝑐𝑒𝑐𝜉
2
𝐹(𝜉)

𝑥

𝑥
𝑘−

1
2

− 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉 
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𝑑𝐹(𝑥)

𝑑𝑥
= 𝑒−𝑐𝑥

2
𝐽
𝑘−

1

2

+ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉) −

𝑥

𝑥
𝑘−

1
2

𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3

2) 𝑑𝜉         (20) 

       

 Integrating (20) with respect to 

𝑥 𝑓𝑟𝑜𝑚 𝑥𝑘−1 𝑡𝑜 𝑥𝑘   

∫
𝑑𝐹(𝑥)

𝑑𝑥
𝑑𝑥

𝑥𝑘

𝑥𝑘−1

= ∫ 𝑒−𝑐𝜉
2
𝐽
𝑘−
1
2
𝑑𝑥

𝑥𝑘

𝑥𝑘−1

+∫ 𝑒−𝑐𝜉
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)

𝑥

𝑥
𝑘−

1
2

𝑥𝑘

𝑥𝑘−1

− 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉 𝑑𝑥 

 

   

[𝐹(𝑥)]𝑥𝑘−1
𝑥𝑘 = 𝐽

𝑘−
1
2
∫ 𝑒−𝑐𝑥

2
𝑑𝑥

𝑥𝑘

𝑥𝑘−1

+∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)

𝑥

𝑥
𝑘−

1
2

𝑥𝑘

𝑥𝑘−1

− 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉 𝑑𝑥 

 

 

𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1) = 𝐽𝑘−1
2
∫ 𝑒−𝑐𝑥

2
𝑑𝑥

𝑥𝑘

𝑥𝑘−1

+∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)

𝑥

𝑥
𝑘−

1
2

𝑥𝑘

𝑥𝑘−1

− 𝜇𝑒−𝑐𝜉
2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉 𝑑𝑥 

Divide the above equation by ∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

  

𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

= 𝐽
𝑘−

1
2

+

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉) − 𝜇𝑒−𝑐𝜉

2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉

𝑥

𝑥
𝑘−

1
2

𝑑𝑥
𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

        (21) 

𝐽
𝑘−

1

2

=
𝐹(𝑥𝑘)−𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)−𝜇𝑒−𝑐𝜉

2
(1+4𝑅𝜆1𝜉

2)
−
3
2)𝑑𝜉

𝑥
𝑥
𝑘−

1
2

𝑑𝑥
𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

                                     (22)          

          A similar expression is obtained for the    𝐽
𝑘+

1

2

  by 

taking (𝑘 + 1) rather than 𝑘 in (22).  In this way we have 

managed to express the flows  𝐽
𝑘±

1

2

   by means of known 

functions of the problem. The relation (22) is exact. 

𝐽
𝑘+
1
2

=
𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝐹(𝜉) − 𝜇𝑒−𝑐𝜉

2
(1 + 4𝑅𝜆1𝜉

2)−
3
2) 𝑑𝜉

𝑥

𝑥
𝑘+

1
2

𝑑𝑥
𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

 

    A substitution of (22) and the corresponding 𝐽
𝑘+

1

2

 

1
2

k
J


  into  (19), namely, 

−𝐽
𝑘−
1
2
+ 𝐽

𝑘+
1
2
+∫ (2𝑐𝑒𝑐𝑥

2
𝐹(𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

− 𝜇𝑒−𝑐𝑥
2
(1 + 4𝑅𝜆1𝑥

2)−
3
2) 𝑑𝑥 = 0 

 

∴

{
 
 

 
 
𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝑓(𝜉) − 𝑒−𝑐𝜉

2𝜇(1+4𝑅𝜆1𝜉
2)
−
3
2
)𝑑𝜉

𝑥

𝑥
𝑘+

1
2

𝑑𝑥
𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

}
 
 

 
 

+

{
 
 

 
 
𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝑓(𝜉) − 𝑒−𝑐𝜉

2𝜇(1+4𝑅𝜆1𝜉
2)
−
3
2
)𝑑𝜉

𝑥

𝑥
𝑘−

1
2

𝑑𝑥
𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

}
 
 

 
 

+ ∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥) − 𝑒−𝑐𝑥

2𝜇(1+4𝑅𝜆1𝑥
2)
−
3
2
)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

= 

 

−
𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

+
𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

+∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥) − 𝑒−𝑐𝑥

2𝜇(1+4𝑅𝜆1𝑥
2)
−
3
2
)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

= −

∫ 𝑒−𝑐𝑥
2
∫ (2𝑐𝑒𝑐𝜉

2
𝑓(𝜉) − 𝑒−𝑐𝜉

2𝜇(1+4𝑅𝜆1𝜉
2)
−
3
2
)𝑑𝜉

𝑥

𝑥
𝑘+

1
2

𝑑𝑥
𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

           (23) 

 

  

Equation (23) is the basic identity to be used for obtaining 

the finite differential equation.  

Now we defined the operation 𝐴 on the domain ∅ of the 

solution (17) as follow where 𝐹 is the Hilbert space 𝐿2(𝐷). 
Where 𝐷 𝑖𝑠 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 Euclidean space 𝐸𝑛 . We 

denote by 𝐿2(𝐷) the Hilbert Space of all real measurable 

square integrable functions ∫ 𝑓2(𝑥)𝑑𝑥 < ∞
𝐷

 with the 

inner product (𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝐷

   

The norm of the function 𝑓 ∈

𝐿2(𝐷) 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 ‖𝑓‖ = (𝑓, 𝑓)
1

2 
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(𝐴𝐹)𝑘 = −
1

∆𝑥𝑘
[
𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥)𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

−

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

+

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

] 

(𝑓)𝑘 = −
1

∆𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

−
1

∆𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥
𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
𝑑𝑥

−

∫ 𝑒−𝑐𝑥
2
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥
𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
𝑑𝑥

]                       

(𝐴𝐹)𝑘

= −
1

∆𝑥𝑘
[
𝐹(𝑥𝑘+1) − 𝐹(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥)𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

−

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

+

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

]              (24) 

Also consider the vector 𝑓 with the component, 

(𝑓)𝑘 = −
1

∆𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

−
1

∆𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥

𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
𝑑𝑥

−

∫ 𝑒−𝑐𝑥
2
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥

𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
𝑑𝑥

]            (25) 

Where (𝑓)𝑘  is a vector and 𝑓 is the source of diffusion 

substance and  

𝑓(𝑥) = 𝑒−𝑐𝑥
2
𝜇(1 + 4𝑅𝜆1𝑥

2)−
3
2 

Also Δ𝑥𝑘 = 𝑥𝑘+1
2

− 𝑥
𝑘−

1

2

 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3, … , (𝑛 − 1). 

For simplicity we will assume that the solution of (17) are 

chosen from the class 𝜙 each function of which has certain 

smoothness properties and satisfied the boundary 

condition𝐹(𝑥) = 0. 

Using a more compact notation (23) for 𝑘 = 1,2,3, … (𝑛 −
1) can be written as 

𝐴𝐹 = 𝑓                                  (26) 
Consider the further various approximation of 

equation(26). Let us introduce the Euclidean Form, 

‖𝐹‖𝜙ℎ
2 = ∑(𝐹𝑘

ℎ)
2
Δ𝑥𝑘

𝑛−1

𝑘=1

                   (27) 

Where 𝜙ℎthe space of net functions from is 𝐹ℎ =
(𝐹1

ℎ, 𝐹2
ℎ, … , 𝐹𝑛−1

ℎ ) defined at points 𝑥1, 𝑥2, … , 𝑥𝑛−1. 
consider the following approximation, 

𝐴ℎ𝐹ℎ = 𝑓ℎ                   (28) 

Where (𝐴ℎ𝐹ℎ)𝑘 = −
1

Δ𝑥𝑘
[
𝐹ℎ(𝑥𝑘+1)−𝐹

ℎ(𝑥𝑘)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−

𝐹ℎ(𝑥𝑘)−𝐹
ℎ(𝑥𝑘−1)

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−

𝐹𝑘
ℎ ∫ (2𝑐𝑒𝑐𝑥

2
𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

]                                                           (29)  

Now we derive the value of 𝜉ℎ , 𝜂ℎ, 𝑎𝑛𝑑 𝜙ℎ  

((𝐴𝐹)ℎ − 𝐴
ℎ(𝐹ℎ)) =

= −
1

∆𝑥𝑘
[
𝐹𝑘+1 − 𝐹𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
𝐹𝑘 − 𝐹𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−∫ (2𝑐𝑒𝑐𝑥
2
𝐹(𝑥)𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

−

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

+

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

]

+
1

Δ𝑥𝑘
[
𝐹𝑘+1
ℎ − 𝐹𝑘

ℎ

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
𝐹𝑘
ℎ − 𝐹𝑘−1

ℎ

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

− 𝐹𝑘
ℎ∫ (2𝑐𝑒𝑐𝑥

2
𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

] 

= −
1

∆𝑥𝑘

𝐹𝑘+1 − 𝐹𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

+
1

∆𝑥𝑘

𝐹𝑘 − 𝐹𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

+
1

∆𝑥𝑘
∫ (2𝑐𝑒𝑐𝑥

2
𝐹(𝑥)𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

+
1

∆𝑥𝑘

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

𝑥𝑘+1
𝑥𝑘

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
1

∆𝑥𝑘

∫ 𝑒−𝑐𝑥
2
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

𝑥𝑘
𝑥𝑘−1

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

+
1

∆𝑥𝑘

𝐹𝑘+1
ℎ − 𝐹𝑘

ℎ

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

−
1

∆𝑥𝑘

𝐹𝑘
ℎ − 𝐹𝑘−1

ℎ

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−
1

∆𝑥𝑘
𝐹𝑘
ℎ∫ (2𝑐𝑒𝑐𝑥

2
𝑑𝑥)

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
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=
1

Δ𝑥𝑘
[∫ (2𝑐𝑒𝑐𝑥

2
)𝐹(𝑥)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

− 𝐹𝑘
ℎ∫ (2𝑐𝑒𝑐𝑥

2
)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

]

−
1

Δ𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

] 

𝜉ℎ =
1

Δ𝑥𝑘
[∫ (2𝑐𝑒𝑐𝑥

2
)𝐹(𝑥)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2
 

− 𝐹𝑘
ℎ∫ (2𝑐𝑒𝑐𝑥

2
)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

]           (1) 

𝜂ℎ

= −
1

Δ𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘−

1
2

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

−

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
∫ 2𝑐𝑒𝑐𝜉

2
𝐹(𝜉)𝑑𝜉𝑑𝑥

𝑥

𝑥
𝑘+

1
2

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘+1
𝑥𝑘

]        (2) 

Now 

𝜃ℎ = [(𝑓)ℎ − 𝑓
ℎ] 

=
1

Δ𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

−
1

Δ𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥𝑘
𝑥
𝑘+

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
𝑑𝑥

−

∫ 𝑒−𝑐𝑥
2𝑥

𝑥𝑘−1
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥

𝑥
𝑘−

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
𝑑𝑥

]

−
1

Δ𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 

=
1

Δ𝑥𝑘
∫ 𝑓(𝑥)𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

−
1

Δ𝑥𝑘
[∫ 𝑓(𝑥)𝑑𝑥

𝑥

𝑥
𝑘+

1
2

−∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑥
𝑘−

1
2

]

−
1

Δ𝑥𝑘
∫ 𝑓(𝑥)𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 

=
1

Δ𝑥𝑘
∫ 𝑓(𝑥)𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

−
1

Δ𝑥𝑘

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥𝑘
𝑥
𝑘+

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
𝑑𝑥

+
1

Δ𝑥𝑘

∫ 𝑒−𝑐𝑥
2𝑥

𝑥𝑘−1
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥

𝑥
𝑘−

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
𝑑𝑥

−
1

Δ𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 

𝜃ℎ = −
1

Δ𝑥𝑘
[

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥𝑘
𝑥
𝑘+

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘+1

𝑥𝑘
𝑑𝑥

−

∫ 𝑒−𝑐𝑥
2𝑥

𝑥𝑘−1
∫ 𝑓𝑑𝜉𝑑𝑥
𝑥

𝑥
𝑘−

1
2

∫ 𝑒−𝑐𝑥
2𝑥𝑘

𝑥𝑘−1
𝑑𝑥

] 

Where (𝐹ℎ)𝑘 = −
1

Δ𝑥𝑘
∫ 𝑓𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑛 −

1 𝑎𝑛𝑑 𝐹0
ℎ = 𝐹𝑛

ℎ = 0 
Using the triangular inequality, we have, 

‖(𝐴𝐹)ℎ − 𝐴
ℎ(𝐹ℎ)‖∅ℎ ≤ ‖𝜉

ℎ‖𝜙ℎ + ‖𝜂
ℎ‖𝜙ℎ   

And ‖(𝑓)ℎ − 𝑓
ℎ‖ = ‖𝜃ℎ‖𝜙ℎ                  (30) 

For any continuous function 𝑢 𝑜𝑛 [0,1]𝑤𝑒 𝑡𝑎𝑘𝑒 symbol 

(𝑢)ℎ to denote the 𝑛 − 1  dimensional vector from 𝜙ℎ with 

the components 𝑢(𝑥𝑘) . 
Let us estimate the norms ‖𝜉ℎ‖𝜙ℎ . ‖𝜂

ℎ‖𝜙ℎ . ‖𝜃
ℎ‖𝜙ℎ  

Now assume that 𝑞, 𝑓 ∈ 𝑄2(0,1) 𝑎𝑛𝑑 𝑃 ∈
𝑄3(0,1) 𝑤ℎ𝑒𝑟𝑒 𝑄𝑠(0,1)is the piece wise continuous 

differential function up to including 𝑆 𝑎𝑙𝑠𝑜. 

Where 𝑞 = 2𝑐𝑒𝑐𝑥
2
, 𝑃 = 𝑒𝑐𝑥

2
, 𝑓 = 𝑓(𝑥) = 𝑒−𝑐𝑥

2
𝜇(1 +

4𝑅𝜆1𝑥
2)−

3

2 
The possible discontinuities being those of first kind at 

points 0 < 𝑌1 < 𝑌2 < ⋯ < 𝑌𝑚 < 1 . We will assume 

everywhere in what follows that the set {𝑌𝑖}𝑖=1
𝑚  belongs to 

the set of net points {𝑥𝑘|𝑘 = 1,2, … , 𝑛 − 1}. 
This assumption will be needed in analyzing the 

approximation error. From the assumption made it follows 

that the solution 𝐹 of problem (17) will be continuous. 

While on each of the segment 

[𝑌𝑖 , 𝑌𝑖+1])_𝑙𝑒 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡  𝑡ℎ𝑒 𝑎𝑠𝑠𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑒𝑡 554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554 ; 𝑖 =
1,2, … ,𝑚 − 1 
The solution will have a fourth derivatives, 

Let us now investigate the behavior of the components 

𝜉ℎ, 𝜃ℎ , 𝜂ℎ under the assumption that ℎ ≪ 1 . 

Where 
𝑀𝑎𝑥

0 ≤ 𝑘 ≤ 𝑛 − 1
|𝑥𝑘+1 − 𝑥𝑘|                 (∗) 

Expanding the (∗) in to the Taylor series in the vicinity of 

the net points, it is not difficult to show that the 

components of these vectors are majorized in modulus by 

the corresponding components of the vector 𝑊ℎ. 
Where {𝑊ℎ} = 𝑁ℎ. 𝐼𝑓 𝑥 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑌𝑖  (𝑖 =

1,2, … 𝑛) = 𝑀 (|∆
k+

1

2

− ∆
𝑘−

1

2

| + ℎ2)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑀 𝑎𝑛𝑑 𝑁 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. Here we introduced 

the notation 

∆
𝑘+

1
2
= 𝑥𝑘+1 − 𝑥𝑘 

Let us assume that in the domain of definition of the 

solution there is a points of discontinuity of the 

coefficients. 

𝑥 = 𝑥𝑖(1 ≤ 𝑖 ≤ 𝑛) 𝑎𝑛𝑑 ∆𝑥𝑘+1
2
= ∆𝑥

𝑥−
1
2
 𝑓𝑜𝑟 𝑘 ≠ 1 

Form (27)  

‖𝑊ℎ‖∅ℎ = [ ∑ (𝑤ℎ)𝑘
2∆𝑥𝑘 + (𝑤

ℎ)1
2∆𝑥1

𝑛−1

𝑘=1,𝑘≠1

] 

Suppose that ℎ = max {∆𝑥𝑘 , 2 (1 − 𝑥𝑛−1
2

) , 2𝑥1
2

} 

Taking the account of the relation 1 − ℎ ≤ ∑ ∆𝑥𝑘−1
𝑛−1
𝑘−1  

and using the above local estimating the terms 𝑊ℎ in the 

square norm. We obtain the estimate 
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‖𝑊ℎ‖∅ℎ
2 = [ ∑ (𝑤ℎ)𝑘

2∆𝑥𝑘

𝑛−1

𝑘=1,𝑘≠1

+ (𝑤ℎ)1
2∆𝑥1] 

Now {𝑊ℎ}𝑘 = 𝑁. ℎ.  If 𝑥 𝑖𝑠 one of the points 𝑌𝑖 , 𝑖 =
1,2, … ,𝑚. 

= 𝑀 (|∆
(𝑘+

1
2
)
− ∆

(𝑘−
1
2
)
|

+ ℎ2) ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑀 𝑎𝑛𝑑 𝑁 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑟 𝑘

≠ 1, 𝑥
𝑘−
1
2
= 𝑥

𝑘+
1
2
 

∑∆𝑥𝑘 < 1

𝑛−1

𝑘=1

 

‖𝑊ℎ‖∅ℎ ≤ (𝑀ℎ
2)2 + (𝑁ℎ)2ℎ 

‖𝑊ℎ‖∅ℎ ≤ (𝑀
2ℎ4) + (𝑁2ℎ2)ℎ 

  

‖𝑊ℎ‖∅ℎ ≤ 𝑀
2ℎ4 + 𝑁2ℎ3 

‖𝑊ℎ‖∅ℎ
≤ ℎ3(𝑀2ℎ
+ 𝑁2) 𝑤ℎ𝑒𝑟𝑒 𝑀 𝑎𝑛𝑑 𝑁 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

‖𝑊ℎ‖∅ℎ ≤ ℎ
3
2√𝑀2ℎ + 𝑁2 

‖𝑊ℎ‖∅ℎ ≤ ℎ
3
2𝐶,𝑤ℎ𝑒𝑟𝑒 𝐶 = √𝑀2ℎ + 𝑁2 

Hence ‖𝑊ℎ‖∅ℎ ≤ 𝐶ℎ
3

2 

Where 𝐶 𝑏𝑒𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Hence we have the 

following estimate for the norms of approximation error of 

𝜉ℎ, 𝜃ℎ , 𝜂ℎ. 

∴ (‖𝜉ℎ‖, ‖𝜂ℎ‖, ‖𝜃ℎ‖) ≤ 𝐶ℎ
3
2           (31) 

Where 𝐶 being positive constant, independent 

ofℎ[𝑀𝑎𝑟𝑐ℎ𝑢𝑘, 30]. Provided one of the two conditions 

below are satisfied. Either the net is uniform on each of the 

intervals [0, 𝑌1], [𝑌1, 𝑌2], … . , [𝑌𝑚, 1] or the net is quasi 

uniform. 

𝑖. 𝑒. 𝑇ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 |∆𝑥
𝑘+
1
2
− ∆𝑥

𝑘−
1
2
| ≤ 𝐶ℎ2 𝑎𝑠 ℎ

→ 0 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑜𝑛𝑙𝑦 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑡𝑖𝑚𝑒𝑠. 𝐶
> 0 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Let us note that if the order of smoothness of any of the 

function 𝑃, 𝑞 𝑎𝑛𝑑 𝑓 𝑖𝑠 decreased by one the following 

estimate is obtained. 

max{‖𝜉ℎ‖. ‖𝜂ℎ‖. ‖𝜃ℎ‖} < 𝐶1. ℎ 

The difference scheme (28) which we have considered, is 

rarely used in practice the way it stand. Since the explicit 

integration of the function 𝑝, 𝑞 𝑎𝑛𝑑 𝑓 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 very 

difficult.  

As rule instead of (28) we used its simplified version. 

(𝐴ℎ𝐹ℎ) = −
1

∆𝑥𝑘
[𝑃

(𝑘+
1
2
)

(𝐹𝑘+1
ℎ − 𝐹𝑘

ℎ)

∆𝑥
𝑘+

1
2

− 𝑃
(𝑘−

1
2
)

(𝐹𝑘
ℎ − 𝐹𝑘−1

ℎ )

∆𝑥
𝑘−

1
2

− (𝑞∆𝑥𝑘)𝑘𝐹𝑘
ℎ] 

As earlier 𝑃 𝑎𝑛𝑑 𝑞 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠  

𝑃 = 𝑒𝑐𝑥
2
 𝑎𝑛𝑑 𝑞 = 2𝑐𝑒𝑐𝑥

2
 

And (𝑓ℎ)𝑘 =
1

∆𝑥𝑘
[𝑓∆𝑥]𝑘 = 𝑓𝑘 

=

𝑓
𝑘+

1
2
(𝑥𝑘 − 𝑥𝑘−1

2
) + 𝑓

𝑘−
1
2
(𝑥

𝑘+
1
2
− 𝑥𝑘)

𝑥
𝑘+

1
2
− 𝑥

𝑘−
1
2

 𝑤ℎ𝑒𝑟𝑒 𝑘

= 1,2,3, … , (𝑛 − 1)         [𝑀𝑎𝑟𝑐ℎ𝑢𝑘 14] 

Where 𝑓 = 𝑒−𝑐𝑥
2
𝜇(1 + 4𝑅𝜆1𝑥

2)−(
3

2
)
 

It turns out all the conclusion we have made with regard 

the size of the approximation on error still hold provided 

all the corresponding assumption on smoothness of 

parameter also remain unchanged. We will now turn to 

convergence properties (28) 𝑎𝑛𝑑 (29). Keeping the 

smoothness assumption on 𝑃, 𝑞, 𝑎𝑛𝑑 𝑓 𝑤𝑒 𝑛𝑒𝑒𝑑 only to 

prove the stability (28). 

‖𝐴‖2 =
𝑆𝑢𝑝 

𝐹 ∈ 𝐹, 𝐹 ≠ 0

(𝐴𝐹, 𝐴𝐹)

(𝐹, 𝐹)
  

And then we used convergence theorem gives in 
[𝑉𝑒𝑟𝑚𝑎 − 7] and it is state below for completeness. 

1. Suppose that the difference scheme 

𝐴ℎ∅ℎ = 𝑓ℎ 𝑖𝑛 𝐷ℎ 

𝑎ℎ∅ℎ = 𝑔ℎ 𝑖𝑛 𝜕𝐷ℎ 
Approximate the initial problem,  

𝐴∅ = 𝑓 𝑖𝑛 𝐷ℎ 

𝑎∅ = 𝑔 𝑖𝑛 𝜕𝐷ℎ  𝑡𝑜 𝑜𝑟𝑑𝑒𝑟 𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∅ 

2. 𝐴ℎ 𝑎𝑛𝑑 𝑎ℎ  𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠. 
3. The difference scheme 𝐴ℎ∅ℎ = 𝑓ℎ 𝑖𝑛 𝐷ℎ 

𝑎ℎ∅ℎ = 𝑔ℎ 𝑖𝑛 𝜕𝐷ℎ  𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒. 
i.e. ∃ positive constants ℎ̅. 𝑐1, 𝑐2 ∈ ℎ < ℎ̅, 𝑓ℎ, 𝑔ℎ ∈ 𝐺ℎ 

Then ∃ 𝑎 unique solution ∅ℎ of the problem 1 satisfying 

the inequality, 

‖∅ℎ‖∅ℎ ≤ 𝐶1‖𝑓
ℎ‖𝐹ℎ + 𝐶2‖𝑔

ℎ‖𝐺ℎ  

Then the solution of ∅ℎ of the difference problem 

converges to the solution ∅ of initial problem. 

i.e. 
𝑙𝑖𝑚
ℎ → 0

‖(∅)ℎ − ∅
ℎ‖𝐹ℎ = 0 

And the following estimates of the rate of convergence is 

valid. 

‖(∅)ℎ − ∅
ℎ‖𝐹ℎ ≤ (𝑀1𝐶1 +𝑀2𝐶2)ℎ

𝑛 

Where 𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
We first estimate the scalar product (𝐹ℎ, 𝑓ℎ). By the 

Cauchy- Bunyakovsky inequality stated below. 

|∑ 𝑆𝑛𝑡𝑛

∞

𝑛=1

| ≤ (∑𝑆𝑛
2

∞

𝑛=1

)

1
2

(∑𝑡𝑛
2

∞

𝑛=1

)

1
2

 

Where 𝑆𝑛 𝑎𝑛𝑑  𝑡𝑛 are sequences. Reference by 

(Bokserman, Brownscombe,1 ,6). By using above 

statement, we have  

(𝐹ℎ, 𝑓ℎ) ≤ ‖𝐹ℎ‖
∅ℎ

1
2 . ‖𝑓ℎ‖

∅ℎ

1
2          (32) 

Where the scalar product is to be understood in following. 

(𝜓, 𝜑) = ∑Δ𝑥𝑘𝜓𝑘𝜑𝑘

𝑛−1

𝑘=1

  𝑤ℎ𝑒𝑟𝑒 𝜓, 𝜑 ∈ ∅ℎ 

Let us investigate L.H.S. (32) in more detail. Since 

𝑞(𝑥) ≥ 0𝑎𝑛𝑑 𝑃(𝑥) > 0 𝑏𝑦 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑤𝑒 ℎ𝑎𝑣𝑒, 
(𝐹ℎ, 𝑓ℎ) = (𝐹ℎ, 𝐴ℎ𝐹ℎ) 

=∑
𝐹𝑘
ℎ − 𝐹𝑘−1

ℎ

∫ 𝑃𝑑𝑥
𝑥𝑘
𝑥𝑘−1

𝑛

𝑘=1

+∑(𝐹𝑘
ℎ)
2
∫ 𝑞(𝑥)𝑑𝑥
𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

𝑛−1

𝑘=1

 

=∑
𝐹𝑘
ℎ − 𝐹𝑘−1

ℎ

∫ 𝑒−𝑐𝑥
2
𝑑𝑥

𝑥𝑘
𝑥𝑘−1

𝑛

𝑘=1

+∑(𝐹𝑘
ℎ)
2
∫ (2𝑐𝑒𝑐𝑥

2
)𝑑𝑥

𝑥
𝑘+

1
2

𝑥
𝑘−

1
2

𝑛−1

𝑘=1

 

≥ 𝑝0∑
(𝐹𝑘

ℎ − 𝐹𝑘−1
ℎ )

2

∆𝑥
𝑘−

1
2

𝑛−1

𝑘=1

 

𝐵𝑢𝑡 𝑝(𝑥) = 𝑒𝑐𝑥
2
, 𝑞 = 2𝑐𝑒𝑐𝑥

2
, 𝑝(0) = 𝑐𝑒0 = 𝑐      [14]               
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(𝐹ℎ, 𝑓ℎ) ≥ 𝑝0∑
(𝐹𝑘

ℎ − 𝐹𝑘−1
ℎ )

2

∆𝑥
𝑘−
1
2

𝑛−1

𝑘=1

 

(𝐹ℎ, 𝑓ℎ) > 0           (33) 
This inequality follows from the fact that vector 𝐹ℎ is 

nonnull. Since it is the solution of the in homogeneous 

problem (28) with non-singular matrix𝐴ℎ. 

Noting that 𝐹0
ℎ = 0 𝑤𝑒 𝑚𝑎𝑦 𝑤𝑟𝑖𝑡𝑒, 

𝐹𝑘
ℎ =∑(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

𝑘

𝑗=1

 

=∑

(𝐹𝑗
ℎ − 𝐹𝑗−1

ℎ )√∆𝑥𝑗−1
2

√∆𝑥𝑗−1
2

𝑘

𝑗=1

 

By the Cauchy- Bunyakovsky inequality for sum we obtain 

(𝐹𝑘
ℎ)
2
=

[
 
 
 

∑

(𝐹𝑗
ℎ − 𝐹𝑗−1

ℎ )√∆𝑥𝑗−1
2

√∆𝑥𝑗−1
2

𝑘

𝑗=1
]
 
 
 
2

 

≤

[
 
 
 
 
 

∑
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

2

(√∆𝑥𝑗−1
2
)

2

𝑘

𝑗=1

]
 
 
 
 
 

[∑ |√∆𝑥𝑗−1
2
|

2𝑛−1

𝑗=1

] 

≤ [∑
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

2

∆𝑥
𝑗−
1
2

𝑘

𝑗=1

[∑∆𝑥
𝑗−
1
2
 

𝑛−1

𝑗=1

]] 

(𝐹𝑘
ℎ)
2
≤ [∑

(𝐹𝑗
ℎ − 𝐹𝑗−1

ℎ )
2

∆𝑥
𝑗−
1
2

𝑘

𝑗=1

]  (∵ ∑∆𝑥
𝑗−
1
2
 

𝑛−1

𝑗=1

≤ 1)              (33) 

From (32) 𝑎𝑛𝑑 (33) we have  

(𝐹ℎ, 𝑓ℎ) ≤ ‖𝐹ℎ‖∅ℎ‖𝑓
ℎ‖∅ℎ  

‖𝐹ℎ‖∅ℎ‖𝑓
ℎ‖∅ℎ ≥ (𝐹ℎ , 𝑓ℎ) 

≥ [∑
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

2

∆𝑥
𝑗−
1
2

𝑘

𝑗=1

] 

≥∑(𝐹𝑘
ℎ)
2
∆𝑥𝑘

𝑛−1

𝑗=1

 

‖𝐹ℎ‖∅ℎ‖𝑓
ℎ‖∅ℎ ≥ ‖𝐹ℎ‖∅ℎ

2  

‖𝑓ℎ‖∅ℎ ≥ ‖𝐹ℎ‖∅ℎ  

‖𝐹ℎ‖∅ℎ ≤ ‖𝑓
ℎ‖∅ℎ  

This inequality prove the stability of the difference 

algorithm (by 32 𝑡𝑜 34).  

Using the convergence theorem with the norm (27) we 

obtained the estimate as below. 

Here ‖𝐹ℎ‖∅ℎ
2 = ∑ (𝐹𝑘

ℎ)
2
∆𝑥𝑘

𝑛−1
𝑘−1  

Using the convergence theorem which was earlier used on 

. Again we use the convergence theorem with assume 

values 𝐶1, 𝑀1 𝑎𝑛𝑑 ℎ 𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡ℎ𝑒𝑛, 

‖𝐹ℎ‖∅ℎ
2 ≤ C1𝑀1ℎ

3  (∵  ∑∆𝑥𝑘

𝑛−1

𝑘=1

< ℎ 𝑎𝑛𝑑 ∑(𝐹𝑘
ℎ)
2

𝑛−1

𝑘=1

< 𝐶1𝑀1ℎ
2)  

‖𝐹ℎ‖∅ℎ ≤ √C1𝑀1ℎ
3 

≤ √C1𝑀1ℎ
3
2 

‖𝐹ℎ‖∅ℎ ≤ 𝑘ℎ
3
2 𝑤ℎ𝑒𝑟𝑒 𝑘 = √C1𝑀1 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

𝜀ℎ = (𝐹)ℎ − 𝐹
ℎ 

‖𝜀ℎ‖∅ℎ ≤ 𝑘ℎ
3
2    𝜀ℎ = (𝐹)ℎ − 𝐹

ℎ 
𝑤ℎ𝑒𝑟𝑒 𝑘 ≥ 3𝐶 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. By drawing certain 

networks analog of the Imbedding theorem we can clarify 

the estimate 

‖𝜀ℎ‖∅ℎ ≤ 𝑘ℎ
3
2 

First we note that 𝐹0
ℎ = 𝐹𝑛

ℎ = 0 

 

(𝐹𝑘
ℎ)
2
≤ [∑

(𝐹𝑗
ℎ − 𝐹𝑗−1

ℎ )
2

∆𝑥
𝑗−
1
2

𝑛

𝑗=1

] 

≤

[
 
 
 

∑
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

2

(∆𝑥
𝑗−
1
2
)
2

 

∆𝑥
𝑗−
1
2

𝑛

𝑗=1
]
 
 
 

6 

≤∑[[
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

∆𝑥
𝑗−
1
2
 

]

2

∆𝑥
𝑗−
1
2
]

𝑛

𝑗=1

 

If 𝐶1 ≤ [
∆𝑥

𝑗−
1
2

∆𝑥𝑗
] ≤ 𝐶2; 𝐶1, 𝐶2 > 0  are constant and 

independent of 𝑗. We have 

(𝐹𝑘
ℎ)
2
≤∑[

(𝐹𝑗
ℎ − 𝐹𝑗−1

ℎ )

∆𝑥
𝑗−
1
2
 

]

2
∆𝑥

𝑗−
1
2

∆𝑥𝑗
∆𝑥𝑗

𝑛

𝑗=1

 

≤ 𝐶2∑[
(𝐹𝑗

ℎ − 𝐹𝑗−1
ℎ )

∆𝑥
𝑗−
1
2
 

]

2

∆𝑥𝑗

𝑛

𝑗=1

 

(𝐹𝑘
ℎ)
2
≤ 𝐶2(‖𝐹

ℎ‖2)𝑤1,ℎ
0  

From this we obtain the following relation for the net 

function (the net analog of imbedding 𝑊2
1(0,1) 𝑖𝑛 𝐶(0,1) 

in one dimension case) 

Where 𝑊2
1(0,1) is a Sobolovespace (0,1). Which is 

Sobolovespace function in 𝑊2
1(𝐷) 𝑡ℎ𝑎𝑡 𝑣𝑎𝑛𝑖𝑠ℎ 𝑜𝑛 𝜕𝐷 

‖𝐹ℎ‖∅ℎ =
𝑀𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛 − 1
|𝐹𝑘

ℎ| 

‖𝐹ℎ‖∅ℎ ≤ 𝐶 ‖𝐹ℎ‖𝑊1,ℎ

0  𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < ∞ 

We also apply the later inequality to obtain a more precise 

estimate of the error. 

𝜀ℎ = (𝐹)ℎ − 𝐹
ℎ 

Then we write an identity  

𝐴ℎ𝜀ℎ = 𝜉ℎ + 𝜂ℎ + 𝜃ℎ 

Then we take the scalar product with 𝜀ℎ 

(𝐴ℎ𝜀ℎ, 𝜀ℎ) = (𝜉ℎ + 𝜂ℎ + 𝜃ℎ, 𝜀ℎ)  
From (33) 

(𝐴ℎ𝜀ℎ, 𝜀ℎ) ≥ ∑[
(𝐹𝑘

ℎ − 𝐹𝑘−1
ℎ )

∆𝑥
𝑘−

1
2
 

]

2
𝑛

𝑘=1

 

(𝐴ℎ𝜀ℎ, 𝜀ℎ) ≥ 𝐶1‖ℰ
ℎ‖𝑊1,ℎ

0  
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𝑖. 𝑒 |(𝜉ℎ + 𝜂ℎ + 𝜃ℎ), 𝜀ℎ| = |∑∆𝑥𝑘

𝑛−1

𝑘=1

(𝜉ℎ + 𝜂ℎ + 𝜃ℎ)𝜀ℎ| 

≤ ‖𝜀ℎ‖∅ℎ∑∆𝑥𝑘

𝑛−1

𝑘=1

‖𝜉ℎ + 𝜂ℎ + 𝜃ℎ‖ 

|(𝜉ℎ + 𝜂ℎ + 𝜃ℎ), 𝜀ℎ| ≤ ‖𝜀ℎ‖∅ℎ‖𝜉
ℎ + 𝜂ℎ + 𝜃ℎ‖𝐿1,ℎ 

We have  

‖𝜀ℎ‖𝑊1,ℎ
0 ≤ 𝐶‖𝜉ℎ + 𝜂ℎ + 𝜃ℎ‖𝐿1,ℎ 

Drawing on the above imbedding theorem, we obtain the 

inequality 

‖𝜀ℎ‖𝑊1,ℎ
0 ≤ 𝐶‖𝜉ℎ + 𝜂ℎ + 𝜃ℎ‖𝐿1,ℎ 

But we have that necessary smoothness of the solution and 

the initial data the quasi-uniform of the net 

‖𝜉ℎ + 𝜂ℎ + 𝜃ℎ‖𝐿1,ℎ

< 3𝑁𝑚ℎ2 + 𝐶𝑚𝐻2∑∆𝑥𝑘

𝑛−1

𝑘=1

  𝑤ℎ𝑒𝑟𝑒 𝐶

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < ∞ 

For the sufficient small ℎ 𝑎𝑛𝑑 𝑚 < ∞ we get the desire 

estimate 

‖𝜀ℎ‖𝐶ℎ ≤ 𝐶‖𝜀ℎ‖𝑊2,ℎ

0 < 0(ℎ2)            (34) 

III. CONCLUSION 

We looked at the flow of two immiscible liquids in a 

broken porous medium in this problem. The flow in 

fractured medium has been changed from a nonlinear 

differential system to an ordinary differential equation, 

which has then been translated to a diffusion equation. 

Confluent hyper-geometric series and an integral form are 

used to get the solution. The equation (34) gives the 

solution of our diffusion equation and we established the 

stability and found the estimates of them. 
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