
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-10, Issue-2, March 2022

 https://doi.org/10.55524/ijircst.2022.10.2.14

Article ID IRPV1035, Pages 72-76

 www.ijircst.org

Innovative Research Publication 72

PyKaldi: A Kaldi Wrapper in Python

Jasdeep Singh,

Assistant Professor Department of Computer Science & Engineering, RIMT University, Mandi Gobindgarh, Punjab, India

 Correspondence should be addressed to Jasdeep Singh; jasdeepsingh@rimt.ac.in

Copyright © 2022 Made Jasdeep Singh. This is an open-access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: PyKaldi is much more than a set of Kaldi

library bindings. It offers best level of compatibility for

OpenFst classes with the tool “Kaldi” to make dealing with

Kaldi easier for Python users. PyKaldi is wrapper most

probably written in a language known as “Python” for the

widely used Kaldi SR toolkit that is free and open-source.

PyKaldi isn't only a set of Python bindings for Kaldi

libraries. It's a Python-based coding that lets programmers

or developers interact with OpenFst types or Kaldi in real

time. NumPy arrays are strongly integrated with both of the

tools discussed. PyKaldi, we hope, will substantially

improve the user experience and make integrating Kaldi

into Python processes much easier. PyKaldi has a lot of

documentation and testing. It supports Python 3 and also

the previous version 2, and is distributed under the Apache

License version 2.0. The fact that Kaldi has been so

efficacious should not arise as any wonder. The features

related to licence, rich documentation, tried methods for

developing cutting-edge systems, a big number of

international contributors, a devoted set of maintainers,

and, perhaps most significantly, a well-designed codebase

that is simple to comprehend, alter, and expand.

KEYWORDS CPython, Cython, Kaldi, OpenFst,

PyKaldi, Python, Speech Recognition.

I. INTRODUCTION

Kaldi is a voice recognition toolkit that is free and open-

source. It includes a huge number of sample scripts for

creating systems, as well as contemporary, stretchy, wide-

ranging archives and executable set of programs developed

in C++ as shown in Fig. 1[1-3]. It has quickly become an

important utility for doing spoken language experiments

and developing spoken-language-assisted apps since its

introduction in 2011. Users usually intermingle with

Kaaldi by manually compiling & executing its extremely

modular and composable terminal applications within any

of the Linux or UNIX terminal or by developing programs

that execute these programmes. The C++ API can be used

to access any feature not offered as a result of the several

command-line Kaldi applications. While this interaction

approach is quite successful, it falls short of meeting the

demands of academics or the programmers who want to

utilise Kaaldi in programming languages apart from C++

[4-6].

Figure. 1: Illustrates the architecture of Kaldi [1]

Python is a widely used general-purpose high-level

programming language in the analytical computing field

[7-8]. It features a straightforward syntax, a large standard

library, and a well-developed community of incredibly

great quality third-party tools for nearly any application,

including numerical computation and deep learning [9-10].

One of the greatest platforms for interactive

experimentation, data analysis, and visualisation is

included. In addition, the benchmark CPython

implementation offers a C language API for developing

innovative in-built datatypes & integrating in the available

libraries of C programming language as shown in Fig. 2,

which may be used to offload results work to C/C++ with

excellent success [11-14]. Python attachments for Kaaldi

modules are one amongst most requested improvements

among Kaldi users for all of these factors and more. There

are several open-source programmes that attempt to narrow

the gap among Kaldi and Python, however they are all quite

restricted in scope.

mailto:jasdeepsingh@rimt.ac.in

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 73

Figure. 2: A model of a vintage CPython compiler is depicted in the image above [11]

PyKaldi, an open and free scripting layer as depicted

in Fig. 3 for Kaldi, is reviewed in this research study, and

it offers a closer analysis of Kaaldi's C++ framework

programming interface in Python [15-19]. Using graphical

Python interpreters like IPython such kinds may be readily

created, edited, and shown. By exchanging the

fundamental storage buffers, PyKaldi utility types may be

transformed to NumPi arrays and conversely [20]. The

PyKaldi FST or transducers categories, which include style

of Kaldi lattices, have an API that is comparable to that of

OpenFst's original Python wrapper. PyKaldi helps make

interacting with Kaldi in Python a snap, even if it is still in

its early stages. The following are some of PyKaldi's most

notable features:

 Kaldi is almost completely covered.

 The design is adaptable:

 PyKaldi is a flexible and easily-retainable

programming language. The class pecking order of

Kaldi and OpenFst are enfolded at several stages in

Python, providing non-specific interfaces. Any

modifications to the Kaaldi C++ interface may be

simply replicated in other languages too.

 Unrestricted license:

 PyKaldi is released under the Apache 2.0 License.

 There is a lot of documentation:

 A variety of sub-modules in PyKaldi already have

substantial documentation. The documentation for all

APIs is produced dynamically from source code.

Furthermore, as much of PyKaldi's API is a direct

replica of Kaldi, almost all of PyKaldi's reference is

relevant to Kaldi.

 Extensive testing:

 A lot of sub-modules in PyKaldi already have

thorough testing. These tests are similar to Kaldi's,

except they additionally include checks for more

Python APIs.

 Script examples:

 The PyKaldi repository contains sample Python scripts

that may be used to replace certain Kaldi executables.

We're also focusing on example configurations that

show how PyKaldi may be used in conjunction with

famous Python modules.

 Python 3 and the earlier version 2 are both supported.

Fig. 3. The picture above shows extended Kaldi software

architecture [21]

II. DISCUSSION

A. CLIF bindings

When it comes to developing Python bindings for C++,

there are a lot of choices. Improved Wrapper and Interface

Builder (IWIB) is an earlier and more developed project. It

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 74

links C and C++ applications to a variety of languages, like

NetBeans and iPython. Nevertheless, IWIB is renowned

for its high or large code output, making debugging

difficult when anything goes wrong. Boost. Python with

pybind11 allow you to encapsulate C++ programs in C++

at a high level. Both are intended to be non-intrusive,

making them excellent choices for exposing third-party

libraries in Python. Pybind11 additionally provides

specialized NumPy array support [22].

Cython is perhaps the most used Python wrapper for C/C++

programming [23]. Cython is a Python-like programming

language as well as a compiler. The Cython programming

language adds C type annotations to Python methods,

variables, and class properties. It enables users to create

Python script which calls pure C++ program back and

forth. This produces optimized C program that can be

immediately executed by the CPython interpreter when

built. Cython extensions seem to users to be identical to

another Python module. Almost all C++ capabilities, such

as template structures and method overloading, are

supported natively in the Cython language.

C++ Language Interface Foundation (CLIF) is used to

create PyKaldi extension modules [24]. CLIF is a Google-

developed open-source project that was just published.

CLIF parses type information from a C++ header using

LLVM and the Clang C++ compiler, which would

further be utilized to validate the interface description for

the same headers and create an extension segment. CLIF

enables programmers to make on-the-fly changes to the

C++ API. Rechristened classes, procedures, and methods;

mapping operations to Python's mystic techniques (e.g.,

constructor to _init_ or destructor to _getitem_); managing

template and functional overloading; and automatically

creating setters and getters for subclass fields are all

examples of this. CLIF was chosen for the reason that it

enabled us to encapsulate Kaldi's code-base in a legible and

simple manner. We can monitor Kaldi changes more

effectively using CLIF since we don't have to make as

many adjustments ourselves. Furthermore, CLIF's self-

made code is far simpler to recite, comprehend, or change

than SWIG or Cython's code. CLIF produced class

containers don't have to be re-wrapped through

composition in order to be immediately available in

CPython, unlike in Cython. Without the requirement for

specific procedural code or unwrapping, CLIF objects may

very easily be inborn or simply given as parameters to

bound roles. On the negative, CLIF is still a young project

with few documentations and examples, as well as a

nascent communal. CLIF's primary constraint mainly

requires the program coding must be C++ v11 compatible

and match Google C++ syntax, which required us to alter

or expand the Kaldi codebase on occasion. CLIF produces

a dummy doc-string, a text factual which further is being

utilized to define the package in iPython, for every module,

subclass, and function wrapped. We modified CLIF's

default behavior to enable alternative docstrings to be

provided within CLIF files to make documenting PyKaldi

easier. The doc-strings discussed previously are tied to the

relevant documentation sections of the related iPython

segments, packages, and methods when they are supplied.

B. PyKaaldi Bundle

PyKaaldi is designed in a modular manner, making it

simple to maintain and expand without having to rewrite

the whole software. The basic records are arranged in a

folder-tree similar to the Kaldi structure. Every folder

corresponds to a sub-package and solely includes wrapper

programs for the Kaaldi module. The packaging code is as

follows:

 C++ headers that define the slats for Kaldi program

that isn't Google C++ compatible.

 The classes and methods to be wrapped, as well as

their Python API, are described in CLIF C++ API

specifications.

 Python packages are collections of interrelated CLIF

set of methods that augment the basic CLIF packages

to offer a better Python based API.

Though the containers produced by CLIF are usually

sufficient for using Kaldi modules, PyKaldi often changes

and expands the same in Python and in few other instances

in C++, to improve the user interface. The remainder of this

section contains useful examples of PyKaldi's new

features.

1) Matrix Bundle

NumPy arrays, Python-Kaldi vector and matrix bundles are

closely linked. Without duplicating the underlying memory

buffers, they may be readily transformed to NumPy arrays

and conversely. They additionally conform the NumPy

array interface, allowing them to be included directly with

functions that require NumPy arrays. Python-Kaldi vector

and matrix bundle upkeep the usual Numpi cutting-edge

indexing patterns merely by offloading the _setitem_ and

getitem NumPy functions, e.g.

PyKaldi matrices and vectors may be made out of other

array-like entities, and their instances can be made by

copying elements from the source objects. When feasible,

Sub-Vector and Sub-Matrix instances exchange data with

the source objects that were used to create them. Only if the

source object contains an array method that yields a copy,

or if the parent object is a series, or when a copy is required

to meet any of the other criteria, is a copy created (datatype,

order, etc.). Sub-Vector and Sub-Matrix instances don't

really own its memory buffers. Therefore, they maintain

implicit relationships to objects with whom they share data

to ensure that their storage channels are often not

deallocated even though they are currently in scope.

2) FST Package

PyKaldi provides built-in functionality for basic FST types

and functions including Kaldi lattices. The user-facing

PyKaldi FST classes and operations API is fully written in

Python, and it closely resembles the API provided by

OpenFst's official Python wrapper. For visual analytics of

FSTs, this provides interfaces with Graphviz and IPython.

Unlike OpenFst's official Python wrapper, which is written

in Cython, PyKaldi's OpenFst bindings are written in CLIF,

ensuring that FST types are compatible with the remaining

portion of the PyKaldi module. PyKaldi also does not cover

OpenFst scripting API, which utilizes virtual dispatching,

function registrations, and impact loads of shareable

resources to offer a common interface used by FSTs of

various semirings, unlike OpenFst's official Python

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 75

wrapper. While this modification necessitates

encapsulating every semiring variant of an OpenFst class

or method template individually, it allows users to send

PyKaldi FST features straight to the many Kaldi methods

that take FST parameters.

3) Error Handling

Assertions are used extensively in the Kaldi codebase to

verify the sanity of inputs and indeed the self-consistency

of calculations. Regrettably, if a Kaldi assumption fails

during execution, it causes an unfixable code abort, which

would not be ideal during an ongoing Python session.

Furthermore, while working collaboratively, all Kaldi

problems, including assertion failures, display a stack

trace, making it difficult to view the actual error message.

We introduced additional methods to Kaldi to either disable

or enable stack traces and indeed the abandon call in

unsuccessful assumption processing to address these

issues. Both are disabled by default in PyKaldi, but the user

may enable them again. PyKaldi performs its own tests in

Python in addition to Kaldi's sanity checks to ensure that

the arguments given to Kaldi are of the right kinds and

sizes.

Figure. 4: PyKaldi is used to extract MFCC characteristics, is depicted in above picture

Fig. 4 shows a sample Python code for generating MFCC

attributes using PyKaldi with NumPy and scikit-learn

common tools. The program first configures the MFCC

harvesting parameters, then uses an iterative over the input

table, extracting and writing MFCC characteristics for each

sound file. Before MFCC characteristics are retrieved, each

sound file is compressed to 8KHz and blended down to

mono. Before being printed down, raw MFCC

characteristics are normalized by eliminating the mean and

normalizing to random values. The PyKaldi option parsing

API differs significantly from the Kaldi option parsing

API. Type-specific enrolment techniques that take name,

default value, and help text parameters, such as min-

duration in the example, are used to register command-line

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 76

parameters for the core program. A PyKaldi ParseOptions

instance's parse _ARGS_ function produces a basic

namespace object with the parsed option settings for the

main script. Other alternative processed values are put

straight into the relevant fields of related options objects,

such as MFCC_OPTS there in example. In classic Kaldi

form, read and write specifiers, or strings that define how

the information should be read or written, are used to build

input and output tables. The contextual management

interface is implemented by PyKaldi table readers and

writers, so they don't need to be stopped when utilised in

a statement. For writing specified key value pairs, PyKaldi

table writers offer a pseudo-dictionary approach. Because

PyKaldi matrices use the NumPy array functionality, they

may be given directly to methods that require Numpy array

inputs, such as mean and scale. NumPy arrays may be

readily changed back to Kaldi scalar and vector types by

creating new Sub-Vector and Sub-Matrix instances that

keep the associated storage buffers with the original arrays

wherever feasible, i.e., no data is transferred until it's

absolutely required.

III. CONCLUSION

PyKaldi, an open-source and powerful scripting layer

written in Python for Kaldi, was discussed. PyKaldi

generates direct interfaces for the Kaldi C++ API using

CLIF and expands the interfaces in Python to improve the

client experience. PyKaldi actually implements a

significant portion of the Kaldi C++ API at the stage of

authoring. The next phase of the project, we think, will

mostly concentrate on providing example configurations

utilizing PyKaldi in conjunction with prominent Python

modules, improving the API, and expanding the literature.

We're optimistic that the Kaldi and Python audiences will

appreciate PyKaldi and make a contribution to its future

growth.

REFERENCES

[1] Zalhan P, Stan A, Teodorescu L, Şaupe A, Duma M. A

Kaldi-based ASR Solution for the Romanian Judicial

System. 2016.

[2] Karan B, Sahoo J, Sahu PK. Automatic speech recognition

based Odia system. In: 2015 International Conference on

Microwave, Optical and Communication Engineering,

ICMOCE 2015. 2016.

[3] Tahira M, Ather D, Saxena AK. Modeling and evaluation of

heterogeneous networks for VANETs. In: Proceedings of the

2018 International Conference on System Modeling and

Advancement in Research Trends, SMART 2018. 2018.

[4] Shukla S, Lakhmani A, Agarwal AK. A review on

integrating ICT based education system in rural areas in

India. In: Proceedings of the 5th International Conference on

System Modeling and Advancement in Research Trends,

SMART 2016. 2017.

[5] Tyagi S, Sexena A, Garg S. Secured high capacity

Steganography using distribution technique with validity

and reliability. In: Proceedings of the 5th International

Conference on System Modeling and Advancement in

Research Trends, SMART 2016. 2017.

[6] Sharma A, Sharma MK, Dwivedi RK. Novel approach of

mining methods for social network sites. In: Proceedings of

the 5th International Conference on System Modeling and

Advancement in Research Trends, SMART 2016. 2017.

[7] Millman KJ, Aivazis M. Python for scientists and engineers.

Computing in Science and Engineering. 2011.

[8] Chauhan N, Bhatt AK, Dwivedi RK, Belwal R. Accuracy

testing of data classification using tensor flow a python

framework in ANN designing. In: Proceedings of the 2018

International Conference on System Modeling and

Advancement in Research Trends, SMART 2018. 2018.

[9] Khatri M, Kumar A. Stability Inspection of Isolated Hydro

Power Plant with Cuttlefish Algorithm. In: 2020

International Conference on Decision Aid Sciences and

Application, DASA 2020. 2020.

[10] Sharma K, Goswami L. RFID based Smart Railway

Pantograph Control in a Different Phase of Power Line. In:

Proceedings of the 2nd International Conference on

Inventive Research in Computing Applications, ICIRCA

2020. 2020.

[11] Arabas S, Jarecka D, Jaruga A, Fijałkowski M. Formula

translation in Blitz++, NumPy and modern Fortran: A case

study of the language choice tradeoffs. Sci Program. 2014;

[12] Lavrijsen WTLP, Dutta A. High-performance python-C++

bindings with PyPy and cling. In: Proceedings of PyHPC

2016: 6th Workshop on Python for High-Performance and

Scientific Computing - Held in conjunction with SC16: The

International Conference for High Performance Computing,

Networking, Storage and Analysis. 2017.

[13] Solanki MS, Goswami L, Sharma KP, Sikka R. Automatic

Detection of Temples in consumer Images using histogram

of Gradient. In: Proceedings of 2019 International

Conference on Computational Intelligence and Knowledge

Economy, ICCIKE 2019. 2019.

[14] Anand V. Photovoltaic actuated induction motor for driving

electric vehicle. Int J Eng Adv Technol. 2019;

[15] Khanna R, Verma S, Biswas R, Singh JB. Implementation of

branch delay in Superscalar processors by reducing branch

penalties. In: 2010 IEEE 2nd International Advance

Computing Conference, IACC 2010. 2010.

[16] Gupta H, Kumar S, Yadav D, Verma OP, Sharma TK, Ahn

CW, et al. Data analytics and mathematical modeling for

simulating the dynamics of COVID-19 epidemic—a case

study of India. Electron. 2021;

[17] Gupta H, Varshney H, Sharma TK, Pachauri N, Verma OP.

Comparative performance analysis of quantum machine

learning with deep learning for diabetes prediction. Complex

Intell Syst. 2021;

[18] Sharma TK. Enhanced butterfly optimization algorithm for

reliability optimization problems. J Ambient Intell Humaniz

Comput. 2021;

[19] Hirawat A, Taterh S, Sharma TK. A dynamic window-size

based segmentation technique to detect driver entry and exit

from a car. J King Saud Univ - Comput Inf Sci. 2021;

[20] PyKaldi [Internet]. [cited 2018 Aug 29]. Available from:

https://github.com/pykaldi/pykaldi

[21] Can D, Martinez VR, Papadopoulos P, Narayanan SS.

Pykaldi: A python wrapper for kaldi. In: ICASSP, IEEE

International Conference on Acoustics, Speech and Signal

Processing - Proceedings. 2018.

[22] pyBind11 [Internet]. [cited 2018 Aug 29]. Available from:

https://github.com/pybind/pybind11

[23] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS,

Smith K. Cython: The best of both worlds. Comput Sci Eng.

2011;

[24] Sutton A, Maletic JI. Emulating C++0x concepts. Sci

Comput Program. 2013;

