

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-10, Issue-4, July 2022

 https://doi.org/10.55524/ijircst.2022.10.4.20

Article ID IRPV1048, Pages 169-177

www.ijircst.org

Innovative Research Publication 169

Comparison of Color Classification Using Computer Vision and

Deep Neural Network

Mir Rahil1, and Ravinder Pal Singh2

1 M. Tech Scholar, Department of Electronics and Communication Engineering, RIMT University, Mandi Gobindgarh,

Punjab, India
2 Professor, Department of Electronics and Communication Engineering, RIMT University, Mandi Gobindgarh,

Punjab, India

Correspondence should be addressed to Mir Rahil; mirrahil206@gmail.com

Copyright © 2022 Made to Mir Rahil et al. This is an open-access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Research on artificial intelligence and

machine learning is currently ongoing and is focused on

real-world problems. Machine learning is used by

computers to make predictions based on the provided data

set or existing knowledge. The main goal of our project is

to use machine learning to categorize different colors while

separating CNN from computer vision. In this work, we

used supervised learning to categorize different hues using

a binary classification approach. Color detection is the

technique of identifying a color. In this scenario, humans

can recognize the hue and choose with ease. A computer,

however, cannot quickly recognize color. It is challenging

to get a computer to quickly detect the color. Given that,

we decide to pursue this initiative. Pandas, OpenCV, and

the Naive Bayes algorithm are all used in Python. Naive

Bayes classifiers are models that assign category labels to

issue occurrences that are represented as vectors of feature

values, where the category labels are selected from a finite

set. There isn't a single method for training these

classifiers; rather, there is a family of algorithms built on

the premise that, given a category variable, the value of one

feature is independent of the value of the other feature.

Open-Source Computer Vision Library OpenCV was

designed to be computationally effective and with a major

emphasis on real-time applications. specialized video

encoding for the cloud. Panda may be a platform that runs

in the cloud and provides infrastructure for encoding audio

and video.

KEYWORDS- Open CV, Colour detection, CNN

I. INTRODUCTION

The project's main objective is to identify color colors

using machine learning and vision methods and to

distinguish between open CV and CNN models.

The objective is to recognize a color from a photograph

taken with a camera and to test the predictions generated

by the machine learning system under various lighting

conditions. The development, testing, and fine-tuning of a

learning model to spot patterns, predict test data, and assess

the machine's predictions produced in both favourable and

unfavourable lighting circumstances are additional

objectives in addition to this experiment.

The Python project here is for color recognition. The

program was created in Python using OpenCV libraries,

which can automatically recognize the name of the color.

Naive Bayes classifiers were used to get the results. We

now have a dataset with names and values for many colors.

Then each color's distance will be calculated to determine

which color is closest. The field of computer vision

emerged in the late 1960s as AI advanced. To increase the

intelligence of the existing synthetic mechanisms and have

them interpret what they saw in a way akin to human

sensory systems, cameras were put into them.

Therefore, real-world 3D objects should be recognizable

from 2D photos using computer vision. Every photograph

tells a story, captures a moment in time, or depicts an

ongoing event. Fig 1. There are available values for r, g,

and b. We now need a new technique to separate the color

name from the RGB value. We calculate a distance (d),

which shows how close we are to selecting the choice with

the least distance, before choosing the color name.

We'll evaluate the CNN strategy and contrast it with other

approaches depending on how accurate they are.

Figure 1: Process using computer vision techniques

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 170

II. LITERATURE REVIEW

As a result, "biohazard waste" refers to a category of

garbage that requires expensive treatment, packing, and

burning, which is predicted to cost eight times more per

tonne than solid waste for the disposal procedure. A single

technique of biological waste treatment or disposal,

according to research in the literature, cannot completely

remove all threats to the environment or people (Stankovic

and Krall, 2007; Krall and Stankovic, 2006).

Therefore, in light of the risks to environmental health

posed by improper management of medical waste, WHO

is offering assistance to the relevant nations. There is a

need for shared treatment and disposal facilities

coordinated by the medical director and governed by the

city authorities since each healthcare facility cannot have

its treatment and disposal system (Celikyay).

The tools provided by the WHO aid the relevant nations'

analysis and decision-making in the development of

thorough guidelines and policies. This endeavor will serve

as a basis for access to well-planned and thorough medical

waste management. The U.S. Environmental Protection

Agency (EPA), the Occupational Safety & Health

Administration, and the U.S. Navy provided the current

information for this Afloat Medical Waste Management

Guide (OSHA). The manual also covers crucial elements

of OSHA's Bloodborne Pathogens Standard as they relate

to ships (e.g., personal exposure preventive measures,

personal exposure control measures, and training

requirements). Environmental Protection, Chief of Naval

Operations, 1999.

III. METHODOLOGY

A. CNN Neural Network Model

The structure of a convolutional neural network is shown

below in Figure 2

Figure 2: End-to-end structure of a convolution neural network [1]

Fully linked neural networks frequently perform poorly on

visual data. This is because every pixel serves as an input,

and the number of parameters keeps growing as we add

more layers [1]. One picture can be distinguished from

another by its unique structure [1]. Images place a great

deal of importance on nearby or nearby places. A higher-

and higher-level representation of the picture contents

might be extracted using CNN.

1) Convolution

Input feature map, a three-dimensional matrix with the first

two dimensions equal to the length and width of the

pictures in pixels, is the initial type of data that CNN

receives. The third dimension's (RGB color image's) size

is 3 [1].

A convolution in CNN takes one tile (3x3 or 5x5) from the

input feature map, applies filters (the same size as the tile)

over them, and creates an output feature map or convolved

feature.

In this convolution stage, as illustrated in Figure 3 below,

the filters essentially glide across the grid of the input

feature map from top to bottom and left to right, extracting

each tile one pixel at a time [2].

Figure 3: Convolution Neural Network [2]

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 171

The CNN multiplies the filter matrix and the tile matrix

element by element for each filter tile, adding all the

elements of the resultant matrix to obtain a single value.

The dot product is comparable to this procedure. The

convolved feature matrix then outputs each of the dot

product results for every filter-tile pair.

The CNN "learns" during retraining the best filter matrices

to use to extract useful features from the input feature

map[2] The number of features that the CNN can extract

rises along with the number of filters that are applied to the

input feature map, but training time also increases as more

filters are added to the CNN. Additionally, each additional

filter that is introduced to the network adds less

incremental value than the one before it. Therefore, we

must build a network that employs the fewest possible

filters to retrieve the characteristics required for precise

picture categorization [3].

2) Activation Functions

The neural network has an activation function as one of its

parts. The activation process determines whether or not a

neuron fire. We need to make sure that these transfer

functions are complex to guarantee that our network has

some non - linearities [3]. As our input layer, yields an

output of zero or one, we may utilize a point estimate. We

have one neuronal if the output is greater than a certain

level. The output is not fired and the value of the output is

zero if it is less than the threshold [3].

3) ReLU

One of the most well-known Activation functions is the

ReLU. For every value of x that is less than zero, the ReLU,

or "Rectified Linear Unit," output is a zero. The function

returns x for any x value that is higher than or equal to zero.

to provide nonlinearity to the model, CNN adds a Rectified

Linear Unit (ReLU) modification to the convolved feature

after each convolution operation.

4) Pooling

The next stage following ReLU is pooling, in which the

CNN decreases the sampling of the original image feature

and the number of feature map axes while maintaining the

most important feature data. One of the most used

techniques is termed max pooling, and it is demonstrated

in Figure 4 below.

Other pools include the average pool and the min pool.

Max pooling operates in a similar way to convolution. It

moves around the feature map and pulls out tiles of a

particular size. The maximum value from each extracted

tile is then outputted to a new feature map, and all other

values are ignored. Two parameters are required for max-

pooling operations [4]. The size of the max-pooling filter

is typically 2x2 pixels.

Figure 4: Max pool

The term "stride" refers to the pixel-based separation

between each extracted tile. The stride in max-pooling

controls the regions where each tile is retrieved, unlike

convolution, where convolution filters glide over the

feature map pixel by pixel. A stride of 2 indicates that the

max pooling operation for a 2x2 filter size will remove all

non-overlapping 2x2 tiles from the feature map.

5) Fully Connected Layers

An end of a convolutional neural network is one or more

completely connected layers. When every node in the first

layer is linked to every node in the second layer, two layers

are fully connected [4]. Their task is to do classification

using the feature that the convolutions have retrieved. The

terminal is typically completely covered with neurons [5].

The SoftMax activation function, which is present in this

last fully connected layer, provides an output probability

value ranging from 0 to 1 for each categorization label that

the model is attempting to predict [5]. The whole

construction of a convolution neural network.

B. Model Implementation

As is well known, CNN classifies pictures using deep

learning, the most popular kind of machine learning. The

best Python package for this is Keras, which makes

creating a CNN model quite easy.

Getting the dataset is the initial step. Download the dataset

or make one of your own. we first need to import the

picture files that make up the 3:1 ratio of training photos to

test images to train the model.

1) Data Analysis

Let's examine the dataset image, as displayed in Figure

5 below. The "plot" function is required to plot the

picture from the dataset, and the "shape" function is

required to determine its size.

Figure 5: Read image from the dataset

2) Building the Model

Once we load our image files, we are ready to build our

model. The code is below:

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 172

Figure 6: Code

Let's import the Keras library first as we are utilizing it in

Python [5]. We are utilizing a sequencing kind of model.

The simplest way to create a model in Keras is with a

sequential model type. Layer by layer, a model may be

built using this Keras package. We are adding model layers

one at a time, as you can see in the code above. To add a

layer to our CNN model, utilize the add () method.

The first two layers in our CNN model are Conv2D layers.

To handle our input photos, Conv2D is a convolution layer

[6]. since the 2-D matrix that makes up our input picture is.

We require a filter matrix for our convolution, and Kernel

determines its size. The Kernel size in this case is 20. We

will have a 20x20 filter matrix if the kernel size is 20 [6].

The layer activation function is called "Activation" in this

case [6] ReLU, short for Rectified Linear Activation, is the

activation function we're utilizing for the top two layers.

With neural networks, this ReLU activation function

performs well.

An input shape is also sent to the first conv2D layer.

Therefore, we are establishing an input shape of 128,128,3,

where the 3 denotes that the photos are in color rather than

grayscale.

To determine the maximum value in each Kernel patch, a

pooling operation may be performed using the MaxPool2D

layer. By simply adding Keras' MaxPooling2D or

MaxPooling2D layer, we may add a maximum convolution

layer to the model [7].

There is a "Flatten" layer sandwiched between the

MaxPool2D layers and the Dense layer. This flattened

layer lies between the dense layer and the MaxPool or

Convolution layer. Between two layers, it acts as a

connector [7].

We will utilize the standard layer type "dense" for the

output layer because it is frequently used for neural

networks [8]. In our output layer, there will be 45 nodes,

one for each potential result for each color (0-44).

"SoftMax" is the final but most significant activation. The

outputs add up to one when the SoftMax is activated in the

dense layer [8]. so that we may examine the output's

probability. Based on the highest likelihood, the model

predicts the color [8].

3) Compiling the Model

We built our model, now we need to compile it. To compile

the model, we need three parameters

 Optimizer: The optimizer manages the pace of

learning (LR). In this instance, we are utilizing the

optimizer "adam" [8]. This optimizer modifies the

training's learning rate. Adam lr=0.0001 was employed

here throughout the training.

How quickly or slowly the ideal weights for the model

are determined depends on the learning rate. Although

a slower learning rate results in more accurate weights,

the computation of the model's weights will take longer

because of the slower learning rate.

 Loss: We are using ‘binary_crossentropy’ for our loss

function [8].

 Metric: We use the "accuracy" measure to view the

accuracy score on the validation set when we train the

model [7] to make interpretation simple.

Let's now summarize our model. We must use the

summary () function to translate the model.

Figure 7 provides a summary of our model.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 173

Figure 7: Summary of the model

C. Model Training and Prediction Training the Model

We have created and assembled our model thus far. It's

time to train the model right now. One of the issues is the

necessity for a sizable dataset of image and video files in

machine learning and machine vision [8]. Because we

probably ran into a circumstance where our system didn't

have enough RAM when importing and processing a big

number of photos or video data sets [8]. Therefore, to

import and analyze pictures in the Keras library, we need

to develop

D. Data Generators

1) Image Data Generator Function

The Image-Data-Generator class is quite helpful in our

application for picture categorization. Depending on the

approach we wish to take, we may use this data generator

in a variety of ways [8]. Here, the flow from the directory

method [8] is used. As seen in figure 8, this technique

requires a path to the directory containing the photos and

the amplification parameters.

We must first import the libraries needed for the data

generator. Then we develop an image-augmented data

generator.

We utilized the ImageDataGenerator class's flow from the

directory function.

image-pre-processing library Keras. The flow from the

directory method accepts the augmentation of the picture

as a parameter [8].

Path, color mode, target size, and batch size are the

arguments of the procedure [8]. To indicate the picture's

path, use the path parameter. To define the color mode of

an input image, use the color mode option. The target size

parameter determines the size of the output picture, while

the batch size parameter indicates how many photos will

be processed in a batch.

The model will cycle through the data according to the

number of epochs we provide because each epoch is

similar to an iteration [9]. Our model will get better as there

are more epochs, but only up to a limit, beyond which it

will cease becoming better with each epoch [9]. We are

utilizing

"Early Stopping(es)" as a result. As a result, training

terminates [9] if there is no discernible progress after a few

additional epochs.

Figure 8: Early stopping

We defined 100 steps/epoch for 100 epochs in our model.

Additionally, we defined min delta=0.0001 and

patience=10 in "Early Stopping(es)" [9]. This signifies that

training will finish after the last 10 epochs if there isn't a

minimum accuracy improvement of 0.0001. We don't want

to continue training if there isn't an improvement.

Once the model has been generated, we must utilize the "fit

generator ()" function with the trained generator, steps per

epoch, and epoch parameters. The constructed model is

then fitted using the fit generator technique [10].

We store the learned model using the same method so that

we may utilize it for the forecast.

To import all of the photos from a specified path and

process them according to the augmentation parameter in

batches for image classification applications, use Image-

Data-Generator.

2) Prediction

Use the previous load Image () procedure to load the photos

now to perform tests or make predictions.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 174

Before submitting original photos to a trained model for

prediction, they are required to be scaled. We can resize all

test photos to 128X128 using the CV2 computer vision

library. The next step is to use the

NumPy library to add each picture to a single array.

3) Load Trained Model for Prediction

We employ the load model function of the Image Data-

Generator class [10] to load the learned model. A trained

model will be loaded from the appropriate place. The

trained model is loaded for prediction using the load model

method [10], which accepts a route for the model. Then,

using the provided trained model, the predict technique is

utilized to forecast each test picture [10].

Figure 9: Load trained model for prediction

4) Confusion Matrix

We employed a confusion matrix approach to analyze the

performance and prediction outcome of our classification

system. Given that there are more than two classification

classes, classification accuracy alone may be deceptive if

the dataset has an uneven distribution of observations

across several classes [10].

Calculating a confusion matrix and graphically visualizing

it can help you understand what our classification

algorithm is forecasting. The entire number of accurate and

inaccurate prediction outcomes is tallied and then divided

by class.

The confusion matrix, which demonstrates how our

classification model is confused with which class when it

makes predictions, is calculated by the Confusion Matrix

() method and returned as an array [11]. It provides

information about the sorts of errors, rather than just the

kinds of mistakes the classifier is making. This array may

be printed or plotted with matplotlib pyplot so that we can

analyze the findings.

IV. SYSTEM ARCHITECTURE

A. Implementing the Open CV Model

The r, g, and b values are available. We now require a

different method that will extract the color name from the

RGB value. To choose the color name, we compute a

distance (d), which indicates how close we are to selecting

the option with the smallest distance.

1) Working on Colour Detection with OpenCV

Just lately, I began working on picture color detection

using Python, deep learning, and OpenCV. When I

discovered [11] OpenCV, which enables the import and

manipulation of pictures in Python as illustrated in Fig. 10,

I started to consider if and how knowledge may be drawn

from these images using machine learning. We've all

observed how we do online searches using various filters,

one of which is color. I was motivated to create code that

will extract colors from photographs and filter out images

that support those colors. In this research article, I describe

how I learned the basics of OpenCV, used the Naive Bayes

technique to extract colors from photos, then selected

images from a set of images that supported RGB color

values. The repository has the complete notebook

available.

Figure 10: Flow Chart for color detection with OpenCV

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 175

2) Naïve Bayes Classification on Dataset

It is a Bayes theorem-based classification-based approach.

To put it simply, a Naive Bayes classifier assumes that a

certain characteristic is present in Figure 11. The Class has

nothing to do with whether a feature is present

Figure 11: Naïve Bayes Classifier Working on Dataset

3) Is Naïve Bayes Efficient for Dataset Predictions?

The most effective algorithm for data mining and machine

learning is naive Bayes. Because the conditional

independence assumption, on which it is based, is always

valid in reality, its competitive classification performance

is unexpected.

4) implement Naïve Bayes Classifier?

the prior probability for the specified class labels. Find the

chance probabilities calculated using each characteristic.

Use the Bayes Formula [12] to determine the loglikelihood

of using these values. To use this method, we employ two

alternative tools. We use this method with a dataset.

5) The Dataset

The three main RGB values that makeup colors are 0 to

255, with 0 to 255 in each of the three columns. The total

values are calculated using the formula [12] 256*256*256

= 16,777,216. These approaches can be represented in

about 16.5 million distinct ways. 864 color names are

present in our collection. We'll be utilizing a dataset that

lists the names of the RGB values with the values

themselves.

6) The Scope and Drawbacks of this Research Area

In real-time color sensor detection and image processing,

color information is crucial. This has an impact on the

video segmentation findings and the accurate real-time

temperature value. The dominant color is initially

identified using the RGB color space's color information.

Choosing a color space is the first stage in the segmentation

of a color picture.

The well-known color model [12] includes components

like RGB, HSI, HSV, CMYK, CIE, YUV, and others. The

most used color model for color processing is the HIS

model, followed by the RGB model (Fig. 12). They are

frequently used in image processing software.

Figure 12: RGB Color Mode

Color detection technology is virtually as bad as picture

and video browsing quality [12]. Everybody these days

wants the nicest colors in their images and films, but

despite the use of several algorithms and approaches, the

results are often subpar due to color segmentation.

However, to achieve the best results, we use the Python

libraries for OpenCV and the Naive Bayes classifier.

V. SIMULATION AND RESULTS

Result analysis on an online dataset using CNN and Open

CV algorithm below(Figure 13 and Figure 14) is the result

discussion of the CNN and open CV algorithm in detail:

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 176

 Figure 13: Result using CNN

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 177

Figure 14: Result using Open CV

VI. CONCLUSION

Using machine vision and convolutional neural networks,

we can classify different color hues in a variety of ideal and

non-ideal lighting situations, such as bright light, low/dark

light, etc. Twilight and sunset light was perceived as low

light sources, but natural daylight was recognized as a

powerful light source. This natural light source has to be

used for this project to provide a less-than-ideal

environment for a machine learning model. We trained and

assessed the machine learning model to categorize distinct

color hues using the dataset. In contrast, as part of the study

area and for all research methods, we employed a computer

vision model where we learned about colors and how to

extract color RGB values and the color name of a pixel.

We learned how to read ARFF files with Weka, CSV files

with Pandas, and how to manipulate data using the

OpenCV library. Additionally, we learned how to manage

operations like double-clicking a window. Several drawing

and image-editing tools frequently utilize this. In this case,

humans can quickly recognize the hue and make a choice.

A computer, however, cannot quickly recognize color. It is

challenging to get a computer to quickly detect the color.

We use a range of techniques to do this task. Python uses

the OpenCV package and the Naive Bayes algorithm.

Naive Bayes classifiers are models that assign category

labels to issue occurrences that are represented as vectors

of feature values, where the category labels are selected

from a finite set. The open CV approach has a percent

accuracy rate compared to the CNN Model's percent

accuracy rate.

REFERENCES

[1] Brennan Gillis, Bob Kenney, Martin Gillis, Mike

Wilkinson, Michelle Adams, Nicole Perry, Carla Hill,

Rochelle Owen - Waste Management Practices: Literature

Review pg:2
[2] Tran Anh Khoa, Cao Hoang Phuc, Pham Duc Lam, Le Mai

Bao Nhu, Nguyen Minh Trong, Nguyen Thi Hoang

Phuong, Nguyen Van Dung, Nguyen Tan-Y, Hoang Nam

Nguyen, and Dang Ngoc Minh Duc - Waste Management
System Using IoT-Based Machine Learning in University

[3] Saurabh Jotwani1, Avesh Sheikh2, Prof. Urvashi

Agrawal3, Dr. Narendra Bawane4 - To develop a Garbage

detection Drone. Journal of Interdisciplinary Cycle

Research Research,441
[4] Anjali Pradipbhai Anadkat, B V Monisha, Manasa

Puthineedi, Ankit Kumar Patnaik, Dr. Shekhar R, Riyaz

Syed - Drone-based Solid Waste Detection using Deep

Learning & Image Processing. Alliance International

Conference on Artificial Intelligence and Machine

Learning (AICAAM), (2019) 362.
[5] Kellow Pardini, Joel J.P.C. Rodrigues, Ousmane Diallo,

Ashok Kumar Das, Victor Hugo C. de Albuquerque, and

Sergei A. Kozlov - A Smart Waste Management Solution

Geared towards Citizens. Sensors (2020), 20, 2380. Pg: 12

of 15
[6] Parkash, Prabu V - IoT Based Waste Management for

Smart City. DOI: 10.15680/IJIRCCE.2016. 04020 Pg: 1267
[7] Praveen Kumar Gupta, Vidhya Shree, Lingayya Hiremath,

and Sindhu Rajendran - The Use of Modern Technology in

Smart Waste Management and Recycling: Artificial

Intelligence and Machine Learning
[8] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos

and Dionisis Kandris - A Review of Machine Learning and

IoT in Smart Transportation. Future Internet 11(4) (2019)

94.
[9] Olugboja Adedeji, Zenghui Wang - Intelligent Waste
 Classification System Using Deep Learning

Convolutional Neural Network
[10] M. A. Viraj J. Muthugala, s. M. Bhagya p. Samarakoon, and

Mohan Rajesh Elara - Tradeoff Between Area Coverage

and Energy Usage of a Self-Reconfigurable Floor Cleaning

Robot Based on User Preference
[11] Subham Chakraborty, Sayan Chowdhury, Soumyadip Das,

Sayansri Ghosh, Rimona Dutta, Sayan Roy Chaudhuri -

Segregable Smart Moving Trash Bin
[12] Bobulski, J., and Kubanek, M - Waste Classification

System Using Image Processing and Convolutional Neural

Networks. Springer International. (2019)

