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ABSTRACT- The concept of fractional calculus dates 

back to the early days of calculus and may be traced back 

to Arbogast's publications in the 1800s. Multiple 

derivatives are defined in this situation by powers of D that 

are logically discovered to be integral in nature. However, 

this gave birth to the idea of evaluating this operator's 

fractional power and attempting to determine its equivalent 

form or operating it on some function in a meaningful 

way.This part of calculus is classified as special calculus, 

and it did not find much application in engineering until 

the advent of electronic computers and control systems, 

where it began to show its capability, such as increasing 

the number of control parameters in a PID control system, 

which essentially increases its ability to be optimised, 

albeit at a higher complexity. This project begins with 

introducing the fundamentals of fractional calculus, 

followed by fractional derivatives of standard functions 

and their interpretation, and then provides fractional 

calculus applications in the context of electronics. 
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I. INTRODUCTION 

Multiple derivatives are defined in this situation by powers 

of D that are logically discovered to be integral in nature. 

The notion of examining this operator's fractional power 

and attempting to determine its equivalent form or to 

operate it on some meaningful function. This part of 

calculus is classified as special calculus, and it did not find 

much application in engineering until the advent of 

electronic computers and control systems, where this 

concept began to demonstrate its capability, such as 

increasing the number of control parameters in a PID 

control system, which essentially increases its ability to be 

optimised, albeit at a higher complexity. 

The fractional calculus is understandable in the sense that 

the derivative is not computed in the sense that it is a 

tangent at a point, as in the regular calculus. The meaning 

is still hazy here, however it may be thought of as having 

numerous points evaluated in the operation rather than just 

one. This offers the fractional calculus the benefit of 

simultaneously functioning on dispersed data, but it has yet 

to be understood and a meaning created from it. 

A. Methodology 

The project begins by introducing the notion of fractional 

calculus, as well as operations on standard functions. This 

Following that, a tiny discriminant is built in the analogue 

domain, which is used in various systems such as filters. 

Following that, PSE and CFE generating methods are 

compared. Following that, a quick overview of fractional 

differentiation in Z transform is provided. Finally, a 

fractional order filter and a multiphase oscillator 

constructed with fractional calculus are described. 

The programmed utilized for PSE and CFE is 'Maple,' and 

MATLAB is used to acquire response of resulting 

functions. To build a multiphase oscillator, first calculate 

the parameters and then simulate them in NI Multisim.  

II. LITERATURE REVIEW 

Fractional Calculus is a Mathematical Analysis tool used 

to examine integrals and derivatives of any order, both 

fractional and real. Many scientists are unfamiliar with 

fractional integrals and derivatives, and they have only 

recently been employed in a pure mathematical context. 

However, integrals and derivatives have been used in a 

variety of scientific applications throughout the previous 

few decades. 

Leibniz's discussion with L'Hospital in 1695 [1] introduced 

the concept of pro rank (pro rata) variations. The theory of 

fractals was designed primarily as a philosophical subject 

of mathematics for many periods after then. Furthermore, 

this powerful mathematical tool has recently found 

applications in numerous of fields, including linear 

programming [6], supercapacitors [7], brain modeling [8], 

and more — see [9] for a fundamental examination as well 

as more implications of nonlinear problems. As 

representations become more widely used, it is sense to 

investigate the development of effective and efficient 

countable filters in [10], the study implies a Taylor 

provided the impetus of the likely to be true to be 

differentiated while constructing discrete partial 

differential equation filters. The developers of [11] use a 

similar tactic, choosing a Newton general form for the 

Finite volume method. See also [12] for a larger parametric 

study. 

III. METHODOLOGY 

A. Fractional Calculus 

As previously covered in prior chapters, the beginnings of 

fractional calculus now allow us to go on to attempting to 

derive meaning from it by solving and comprehending it. 

B. Origins and Basics 

Fractional calculus is derived from the 'D' notation for the 

differential operator, Da, where a denotes the order of 

derivative. This term is often used to define a series of 

derivatives. 
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Where, D is equivalent to 

 
However, this does not limit us to integer power; we may 

also test a fractional power of D, such as, 

 
This notation, on the other hand, is not obvious.When 

attempting to describe a comparable operation on integrals, 

we may utilise the Cauchy integral to aid in the solution of 

a fractional integral; but, due to the inclusion of the gamma 

function in the formulation, we cannot use it for negative 

values or derivatives. In that sense, it becomes extremely 

tough to solve. 

All true numbers of n are included in the specification of 

dny/dxn. Considering the function f (x), which is 

established for x larger than zero. Make a second 

derivative with values ranging from 0 to x. It's referred to 

as, 

 
Repetition of this procedure yields 

 
This can be continued indefinitely. 

For periodic integrate, Cauchy's theorem, therefore 

 
results in a straightforward extension for real n 

The ionization tool is useful for quintic operating company 

tasks because it eliminates the basic function's equations to 

describe. 

 
This is an action with a clear definition. 

The semigroup feature of fractional differintegral 

operators of this concept is also useful. 

 

 
As a result, we altered the validity and the reliability in the 

last phase and retrieved the f (s) ingredient from the t 

assessment. t = s + (x s) r 

 
That beta form, which has the set of criteria, is the 

innermost exponential.: 

 
Replacing the original equations with a new one 

 
Changing constantly and achieves the evidence by 

demonstrating that the order in which the J operator is 

employed is unimportant. 

In addition, the Riemann–Liouville fractional integral is 

defined. "The Riemann–Liouville integral, which is 

basically what has been explained above, provides the 

traditional form of fractional calculus." The Weyl integral 

is the theory for periodic functions (which includes the 

"border condition" of recurring after a period). It is based 

on the Fourier series and necessitates the disappearance of 

the constant Fourier coefficient. Upper and lower 

Riemann-Liouville integrals exist. The integrals are 

defined for the interval [a, b] as" 

 

 
Where the former is true when t > a and the later is true 

when t b. 

There have been various interpretations of fractional 

integrals over time, but we will not go into them here 

IV. SYSTEM ARCHITETURE 

The phase shift behaviour of fractional derivatives of 

sinusoids is shown in figure 1 below for sin(x), where 𝛼 =
0.25, 0.5, 0.75 
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Figure 1: The phase shift behaviour of fractional derivatives 

The legend is as follows, and each phase shift is clearly a 

fractional derivative of sin(x) in blue. 

---- 𝑦 = 𝑠𝑖𝑛(𝑥), ---- 𝑦 = 𝑠𝑖𝑛 ((
180

𝜋
)),  

---- 𝑦 = 𝑠𝑖𝑛 ((
180

𝜋
)), ---- 𝑦 = 𝑠𝑖𝑛 ((

180

𝜋
)), 

---- 𝑦 = 𝑠𝑖𝑛 ((
180

𝜋
)) 

Because the angles are in radians, the 180-conversion term 

is used for graphing. 

A. Analog interpretation of Fractional Derivative 

In mathematics, analogue domain or frequency domain is 

frequently used to try an alternate technique to solving 

systems, which is often easier. It is also used in engineering 

to determine system performance and to develop systems. 

There are various techniques to go to frequency domain, 

but only two are commonly utilised in engineering. Fourier 

and Laplace transform. For the sake of attempting to make 

sense of fractional derivatives, the latter makes sense 

because it is frequently employed to aid in the solution of 

differential equations by transforming them into algebraic 

problems that are much easier to solve. 

We begin by defining the derivative and integral in the 

Laplace domain. We know that the derivative is changed 

to's' and the integral is translated to '1/s'. By increasing the 

power of s, this notation may be extended to numerous 

derivatives and integrals. 
1

𝑠𝑎
 

Where, 𝑎 ∈ 𝑍. If 𝑎 > 0 then it is an integrator, if 𝑎 < 0 

then differentiator. 

However, in this situation, it should be emphasised that it 

only works if the original requirements are not met. 

We may expand the domain of a to rational numbers, as we 

can with 'D' notation. This results in the realisation of 

fractional derivative and integral in analogue domain.Here 

now a is replaced with 𝛼, 
1

𝑠𝛼
 

Where, 𝛼 ∈ 𝑅 

It would be useful to be able to acquire the step response, 

bode plot, of this extended operator in order to observe its 

behaviour. However, the program  we use for this is 

MATLAB, which does not allow fractional derivatives by 

default and hence cannot get these results. 

To get around this issue, we apply conventional expansions 

to get integral order equivalent transfer functions. This is 

accomplished in the following manner: 

Evaluation of fractional derivative using PSE and CFE 

To evaluate the  𝑠±{𝛼} in Maple using CFE and PSE, we 

use the following form, 

(1 + 𝑥)𝛼  

Where, 𝑥 = 𝑠 − 1 

The original equation is then evaluated using expansion 

procedures, and the x is replaced with the supplied value 

again, and the problem is simplified. This results in an 

integral order equivalent transfer function, which can be 

calculated for different alpha values and visualised in 

MATLAB using the control systems module. 

B. Comparison of CFE and PSE 

After reduction, it is obvious that CFE gives a superior 

approximation than PSE in this example since CFE has less 

complexity and less variance than PSE. The MATLAB 

analysis is provided later down. 

C. MATLAB 

The following data shows the step response of the analogue 

version of fractional derivative at various alpha values. 

The fractional derivative response obtains step and bode 

responses using the MATLAB control systems tool box. 

This is done with the following values: = 0.7, 0.75, 0.8, 

0.85, 0.9, 0.95. Using the CFE coefficients to define a 

transfer function; 

x = .7;  % replacing α with x for MATLAB 

P0 = x^2 + 3*x + 2; 

P1 = 8 - 2 * x^2; 

P2 = x^2 - 3*x + 2; 

A= [P2 P1 P0]; 

B= [P0 P1 P2]; 

C=tf (A, B) 
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The resultant transfer function becomes 

C = 

  0.39 s^2 + 7.02 s + 4.59 

  ------------------------ 

  4.59 s^2 + 7.02 s + 0.39 

The step response is shown for the system in figure 2 

 

Figure 2: Step response for the System 

Also, the bode plot in figure 3 for the same is;  

 

Figure 3: Bode Diagram 

For α = 0.75, C = 

  0.3125 s^2 + 6.875 s + 4.813 

  ---------------------------- 

  4.813 s^2 + 6.875 s + 0.3125 

STEP AND BODE in figure 4 and 5 
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Figure 4: Step response α =0.75 

 

Figure 5: For α=0.75 bode response 

For α = 0.8, C = 

  0.24 s^2 + 6.72 s + 5.04 

  ------------------------ 

  5.04 s^2 + 6.72 s + 0.24 

STEP AND BBODEin figure 6 and 7 
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Figure 6: step for α = 0.8 

 

Figure 7: Bode for α = 0.8 

V. RESULTS 

A. Moving to Discreet domain (Z-domain) 

Moving to the discrete domain with the Z-transform is 

possible by sampling the Laplace transform. This is 

advantageous in signal processing. For fractional 

derivatives, there are two methods: direct and generating 

function, as demonstrated below. 

The generating function technique begins with the 

specification of the Z-transform and proceeds to find its 

derivative, resulting in a fractional power of z. This is the 

derivative property of the Z-transform, as seen below. 

The generating function for Z-transform is given as; 

𝑍𝑥[𝑛] = ∑

∞

𝑘=−∞

𝑥[𝑛]𝑧−𝑘 

To obtain a derivative using the same, we differentiate the 

both sides to obtain, 

ⅆ

ⅆ𝑧
𝑋(𝑧) = ∑

𝑘=−∞→∞

𝑥[𝑛] ⅆ
ⅆ𝑧

𝑧−𝑘 

∑

𝑘

(−𝑘)𝑥[𝑛]𝑧−𝑘−1 = −
1

𝑧
∑

𝑘

𝑛𝑥[𝑛]𝑧−𝑘 
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Successive differentiations are therefore denoted by the 

standard Z transform of the provided function multiplied 

by na/za, where an is the order of differentiation. Similarly 

to the continuous derivative, the domain of order an is 

extended to that of real numbers in this case, and we obtain 

a fractional derivative in the discrete domain. 

𝐷𝛼{𝑍(𝑥[𝑛])} = ∑

∞

𝑘=−∞

𝑥[𝑛]{𝐷𝛼𝑧−𝑘}

= (−1)1+⌈𝛼⌉ (
𝑘

𝑧
)

𝛼

𝑍(𝑥[𝑛]) 

When utilising computers, the alternate approach for 

generating the z transform is more feasible. This approach 

simply samples the Laplace domain transfer function and 

transforms it to the z domain using MATLAB's c2d 

function, as illustrated below. The discrete answer is also 

presented. 

This is a 4th order example system built in MATLAB. 

x = -.5; % 0.5 order integral 

P0 = x^4 + 10*x^3 + 35*x^2 + 50*x + 24; 

P1 = -4*x^4 - 10*x^3 + 40*x^2 + 320*x + 384; 

P2 = 6*x^4 - 155*x^2 +864; 

P3 = -4*x^4 + 20*x^3 + 40*x^2 - 320*x + 384; 

P4 = x^4 - 10*x^3 + 35*x^2 - 50*x + 24; 

A= [ P0 P1 P2 P3 P4]; 

B= [ P4 P3 P2 P1 P0]; 

C=tf(A,B) 

step(B) 

bode(B) 

B= c2d(C,0.001,'tustin') 

step(B) 

bode(B) 

B. OUTPUT 

C = 

  6.563 s^4 + 235 s^3 + 825.6 s^2 + 551.3 s + 59.06 

  59.06 s^4 + 551.3 s^3 + 825.6 s^2 + 235 s + 6.563 

Continuous-time transfer function  shown in figure 8.

 

Figure  8 Transfer Function 

For C Bode Diagram for phase and magnitude can be seen in 

figure 9.  

 

Figure  9: Bode Diagram for phase and magnitude 
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For C 

B = 

  0.1126 z^4 - 0.4463 z^3 + 0.6636 z^2 - 0.4384 z + 0.1086 

       z^4 - 3.991 z^3 + 5.972 z^2 - 3.972 z + 0.9907 

Sample time: 0.001 seconds 

Discrete-time transfer function. 

As can be seen in the figure 10 system B, it has now been 

turned to discreet equivalent.

 

Figure  10 Step response for B 

 For B, (it is similar to C as seen in figure 11 is expected, 

because it is just a discreet version.)

 

Figure 11: Step response for B 

For B, (this is also similar to its continuous equivalent as it 

is generated from the same.) 

C. Fractional Derivative and Integral 

As we have shown in figure 8, we may use the's' notation 

to denote the fractional derivative and integral in the 

analogue domain, and we have also seen how it behaves in 

comparison to the integer order differential operators. In 

addition, we created a way for using the fractional 

differential operator in the z-domain. These approaches 

provide us more control over systems that are normally 

represented in the analogue realm by the derivative and 

integral notation of s, notably energy storage components 

such as capacitors and inductors. This is a highly strong 

tool, and its investigation is and will be beneficial in 

solving engineering challenges, including those in 

electronics, whether through simulation or actual system 

design. Observation for the values of S can be seen in 

figure 12.
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Figure 12: Observation for the values of S 

s can be observed, the waveforms are 90 degrees out of 

phase with one another. 

The second fractional alpha situation is now presented and 

simulated. 

Phase shifts of 1=2=3=4 =0.8 or 72o 100 krad/sec = o Also, 

R1 = R2 = R3 = R4 = R, C1 = C2 = C3 = C4 = C, and the 

feedback constants are a0 = 1.618034; a1 = -1; a2 = 1. 

As a result, the characteristic equation in this example is; 

 
For this case the values of Rn and Cn are R1 = 193 kohm; 

R2 = R3 =10 kohm, R4 = 11.6 kohm and C1 = C2 = C3 = 

C4 = 10 nF. 

After putting in the values, the following results are 

obtained shown in figure 13.

 

Figure 13: Results obtained 

VI. CONCLUSION 

The applications section clearly indicates that the system 

provides for more control and the design of systems that 

will pave the way for more sophisticated technologies or 

improve existing ones. 

To summarise, the genuine advantage of fractional 

calculus will only grow in the future as it allows us to attain 

finer control and greater functionality by using electronics 

and computer areas ranging from control systems to digital 

signal processing or oscillator designs. 
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There is a lot of work to be done, such as trying to 

understand and develop applications for fractional calculus 

in many other fields of technology, such as simulations and 

the design of real-world hardware systems. 
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