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ABSTRACT- The examination of patient data, which 

may contain personally identifiable information, is a 

common part of biomedical research. If these data are 

misused, it could result in the disclosure of private patient 

information, which would put the patients' right to privacy 

at risk. The challenge of protecting the privacy of patients 

in an era dominated by big data has garnered a growing 

amount of attention in recent years. There have been a lot 

of different privacy approaches created to protect against 

different attack models. In the context of research in 

biomedicine, this publication provides a review of 

pertinent subjects. It is discussed how technology can 

protect privacy, particularly in relation to record linking, 

synthetic data production, and the privacy of genomic data. 

In addition to this, we conduct an analysis of the ethical 

implications of the privacy of big data in biomedicine and 

we emphasise the obstacles that lie ahead for future 

research pathways aimed at strengthening data privacy in 

biomedical investigations. Both of these topics are covered 

in detail throughout this article. After the paper was first 

published, it was highlighted in the publication Biomedical 

Research.  

KEYWORDS- Data Privacy, Biomedical Research, 

Data Security, Bioethics, Genome Analysis 

I.  INTRODUCTION 

The Health Information Technology for Economic and 

Clinical Health Act (HITECH Act) [1] has mandated the 

adoption of electronic health records (EHRs) in the United 

States in order to improve the quality of health care, and as 

of January 2015, 83% of office-based physicians had 

adopted EHRs. The widespread adoption of electronic 

health record systems has made it possible for medical 

professionals and researchers to generate and compile 

large-scale phenotypic data from patients suffering from a 

variety of diseases. This is made possible thanks to the fact 

that it is now possible to do so. In addition to the 

information that may be accessed via EHR systems, recent 

advancements in sequencing technology have made human 

genomic data substantially more accessible and affordable. 

A national cohort that will encompass one million 

Americans and have their genetic data sequenced is going 

to be established as part of the Precision Medicine 

Initiative, which was just just announced by President 

Obama. This initiative was just recently announced by 

President Obama. The United States of America will be the 

setting for this event. In order to accomplish this objective, 

it will first merge genetic data and EHR data from 

networks that have already been formed, and then it will 

recruit additional participants to take part in the study[4]. 

These most recent developments make the field of big data 

science possible and have the potential to significantly 

accelerate the process of locating new findings in the 

biomedical field. In addition, the field of big data science 

has the potential to significantly accelerate the process of 

discovering new treatments. On the other hand, the ever-

increasing amount of biological data, which includes a 

significant amount of personal information about patients, 

makes it more difficult than it has ever been to protect the 

patients' right to personal privacy. This is because the data 

contains a significant amount of private information about 

patients. These numbers need to be examined very 

carefully. ly protected, as failure to do so could result in 

the disclosure of information and a breach of patients' 

privacy, which would have a detrimental impact on 

patients and may have serious repercussions (e.g., 

discrimi- nation for employment, insurance, or education 

[2]). 

 

Figure 1: Graphical illustration of the homomorphic 

encryption algorithm, which allows for computation to be 

performed on encrypted data while still producing 

encrypted output 

This type of encryption makes it possible to perform 

homomorphic encryption. 

The second approach, known as Safe Harbor, calls for the 

elimination of a list containing 18 identifiers [3]. It would 

appear that the Safe Harbor strategy is more beneficial than 

the Expert Determination strategy when put into practice. 

The reason for this is that Safe Harbor is more user-

friendly. There are several disagreements regarding these 

HIPAA privacy standards [5] [8], despite the fact that the 

method is still the most common one in practise. [5] [6] [7] 

[8] Some people have the opinion that the safeguards 

against the de-identification of data are not strong enough 

[5]. The privacy legislation that are currently in effect do 

not cover either longitudinal data or transactional data, 

both of which can be used to re-identify a person; 
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nevertheless, none of these types of data are addressed. In 

spite of the fact that HIPPA makes a point of mentioning 

the protection of biometric information such as fingerprints 

and voice prints, this coverage does not extend to personal 

genetic data. Others contend that privacy precautions will 

make it more difficult to do scientific research, and that 

making them a reality will make it more difficult to 

conduct significant biomedical investigations that rely on 

suppressed qualities. One illustration of this would be fine-

grained geriatric research carried out in places with less 

than 20,000 people living in them [9]. These studies would 

involve participants who were at least 89 years old. One 

individual has expressed concern that the privacy 

restriction will make it more difficult to successfully use 

computerised health records in research [5]. Any data 

access policy will, in practise, require some form of 

implicit compromise between the potential threats to an 

individual's privacy and the benefits that can be gained 

from the data [10]. In point of fact, the vast majority of 

owners of clinical data opt for a solution that is somewhere 

in the middle. To accomplish this, they pick one of the two 

approaches listed below: (1) modifying data in such a 

manner that it becomes more difficult to link information 

to a specific individual, or (2) limiting the amount of 

information that is made available to the general public. 

Both of these methods are considered to be forms of 

information concealment. A viable solution needs to take 

into account both the context of the application and the 

expected background knowledge of the attackers in order 

to find the best possible compromise. Only then can the 

ideal compromise be found. Only after that would it be 

possible to achieve the highest possible level of safety[11]. 

In order to determine the scope of this endeavor, we 

decided to investigate associated privacy preserving 

strategies for a select few pertinent and applicable topics in 

the field of biomedical research. We have high hopes that 

our discoveries would prove to be beneficial. These 

locations were chosen due of the possible influence they 

could have [12]. The following is a list of topics that will 

be discussed as part of this event: The first is record 

linkage, the second is distributed data analysis, the third is 

the development of synthetic data, and the fourth is secure 

genome analyses. When we change our focus to privacy 

protection technologies, electronic health records (EHR) 

and genomic data will both be at the forefront of our 

attention as we make this transition. The following outline 

describes the organisation of the remaining parts of this 

work: In order to get started, Section 2 is going to give the 

historical context of the problem with data privacy in terms 

of the ethical and privacy considerations that are involved. 

Second, in Section 3, we will discuss the processes that are 

carried out in order to safeguard the confidentiality of the 

data. The challenges that were encountered, as well as 

some possible solutions, are spoken about in the fourth 

section. The verdict will be presented in the fifth and final 

portion of this article. As seen in Figure 1, HME permits 

direct calculation over encrypted data using multiplication 

and addition, with the output encrypted under the same 

encryption key. 

II.  PRIVACY PRESERVING METHODS 

Here, we'll take a look at privacy-protecting strategies for 

four distinct types of data: genomic data, synthetic data, 

EHR patient linkage, and the generation of synthetic data 

all play important roles in this study. 

A. EHR Patient Linkage 

These days, biomedical information systems are capable of 

collecting, storing, and processing vast quantities of data. 

In spite of the efforts that have been made to manage these 

information systems, the data that pertain to healthcare are 

typically disorganized, redundant, prone to error, and 

heterogeneous. This makes it difficult to obtain 

information that is meaningful. Record linkage, also 

known as duplicate detection [35] or entity resolution [36], 

is a crucial stage in the process of carrying out biomedical 

research. This step is also known as "entity resolution." It 

does this by searching multiple different data sources for 

records that refer to the same real-world thing and then 

identifying those records when it finds them. 

B. The Privacy-Preserving Record Linkage Process 

In addition to their privacy approach, PPRL solutions make 

use of linking procedures that involve two parties and three 

parties respectively. In the first approach, data owners use 

encrypted messaging to determine matched pairs on their 

own directly. [41], [42] make advantage of SMC to 

compute the set of matching records in a stealthy manner. 

In the three-party arrangement, a third party is responsible 

for matching the records that are held by the original data 

owners. The majority of modern PPRL solutions have a 

bias toward mistrusting third parties, even when those third 

parties are reputable institutions such as the National 

Center for Health Statistics [43]. One protocol party may 

threaten privacy in both cases. PPRL's "semi-honest" 

threat model is popular. 

C. Secure Transformation Using Bloom Filters 

Secure transformations decompose record string attributes 

into n-grams. The original records are mapped into Bloom 

filters via these functions as well as the hash function [44]. 

Bloom filters, often known as BFs, are able to accurately 

represent the original string thanks to their utilisation of bit 

arrays. Hash functions produce a probabilistic map that 

corresponds each letter in the text to a bit in the array. This 

map is called the hash value. Finding patterns can be 

accomplished with the help of this map. In this operation, 

all of the bits in the array are first set to zero; after that, the 

only bits that are set to one are the ones that were identified 

by hashing the original string's grammes. This method 

produces a field-level binary forest (FBF) by determining 

the degree to which individual records are comparable to 

one another using set-to-set distance metrics like the Dice 

coefficient. The PPRL methods that are based on this 

encoding produce good usefulness; however, the FBF 

representation of the original string property could 

potentially reveal some information to an adversary [45]. 

(for instance, attacks that vary in accordance with their 

frequency) In order to make BF-based PPRL strategies 

safer, Durham et al. [46] suggested fusing together 

numerous FBFs representing each record attribute into a 

single composite BF for each record. This would result in 

a single composite BF for the entire record. Because of the 

composite structure, it will be more difficult for the 

adversary to determine the original records based on the 

single bit values by using the frequency information that is 

included within the grammes. This is because the 

information is encrypted. 
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D. Secure Computation Using Scalar Product 

Secure scalar product techniques are used to privately 

compute record vector similarity. Yakout et al. [41] have 

come up with a technique for PPRL that involves two 

parties. The solution incorporates secure transformation in 

addition to SMC. As part of the preliminary protocol, 

string records are appended to vectors [47]. During this 

stage, the initial records are imbedded into a vector space 

by combining the fundamental reference sets with random 

string data. This is done in order to generate the initial 

vector. Each owner of the data supplies a vector of 

distances for each record, with each component of the 

vector containing the minimal Edit distance that exists 

between the record in question and the strings that 

comprise the i-th base set. It is the starting coefficient of 

the Discrete Fourier Transform for each vector, and it is 

represented as such. This map demonstrates that if two 

vectors are close to one another before mapping on the 

complex plane, then the values that are mapped from those 

vectors will be closed. This is demonstrated by the fact that 

the values that are mapped from those vectors are closed. 

As a result, the degree to which the initial data can be 

compared to one another is decided by the complex plane 

scalar product. In contrast to the secure transformation 

described in [47], the method described in [41] had both a 

high linkage utility (with no false negatives and only a 

minimal number of false positives) and a short execution 

time. Additionally, there were no false negatives and only 

a minimal number of false positives. 

E. Hybrid Solution with Privacy-Preserving Blocking 

In most cases, conducting an analysis of the pairwise 

similarity of all records is unnecessary. In point of fact, it 

is often sufficient to only look at attribute differences in 

order to identify the small portion of pairs that may be 

matching records and dismiss the remainder of the pairs. 

In order to make the most of this, the most recent solutions 

for PPRL make use of efficient blocking and indexing 

algorithms. These algorithms help to eliminate 

unnecessary pairwise comparisons while still keeping truly 

matched pairings. If the indexing/blocking strategy is not 

adequately designed, the blocking stage decreases 

matching overhead but may reduce utility. PPRL solutions 

usually follow the blocking step with an SMC phase to 

securely match data within the same block. Kuzu et al. 

came up with a three-party differentially private blocking 

method [48]. [49] This blocking method, which protects 

users' privacy, brings about a significant reduction in the 

cost of pairwise similarity evaluation at the SMC and 

produces reliable findings when it comes to linking 

datasets with personal identifiers. 

F. PPRL Comparison 

Table 1 compares the PPRL approaches from the 

preceding sections on five dimensions: a guarantee of user 

privacy, scalability, and the quality of linkages. First, in 

order to linkage, all PPRL systems require a third party, 

with the exception of Yakout et al. [41], which is the only 

exception. Second, indexing can be used to reduce the 

amount of computational work that is necessary, as shown 

by Yakout et al. [41] and Kuzu et al. [48] respectively. This 

was demonstrated in their respective studies.Last but not 

least, in terms of linkage quality, every solution except for 

Durham et al. [46] matches every record's attribute 

individually. Any one of the PPRL methods outlined above 

could potentially be utilised in a biological setting, 

depending on the circumstances. PPRL systems that make 

use of indexing techniques are more scalable for the 

linking jobs associated with Big Data. Third parties in 

protocols are also significant. The third party may simplify 

record matching, but it may also expose the protocol to 

collusion attacks. 

Table 1: PPRL methods comparison 

 

G. EHR Data Anonymization 

Anonymization of EHR data safeguards sensitive private 

data and enables data analysis and study at the population 

level. It is challenging to create a dataset that is anonymous 

and that maximises the data's utility. This section examines 

the most up-to-date methods for sanitising individual 

records to ensure they comply with DP, working under the 

assumption that attackers have arbitrary prior knowledge. 

An early survey on methods of data publishing that respect 

users' privacy while also satisfying other privacy criteria is 

currently available. This survey will look at strategies. 

(which incorporates ideas such as k-anonymity, l-diversity, 

and t-closeness). We will apply DP algorithms to 

structured relational data, which is prevalent in biomedical 

data analysis, since most are designed for statistical 

databases. We cannot mention other intriguing 

unstructured clinical note research due to space 

constraints. 

H. Partition-Based Methods 

Partition-based approaches partition data and disturb each 

partition. 

Dwork and colleagues [22] came up with a straightforward 

method by making use of individual Laplacian 

perturbations to be applied to the cell counts of the initial 

histogram. The addition of noise to the partition counts 

results in the creation of synthetic data. It does this by 

disturbing the elements of a nearly homogeneous partition 

together, which results in cost savings for the privacy 

budget. The differentially private spatial decompositions 

(PSDs) developed by Cormode et al.  segment space into 

more manageable regions and provide statistics on the 

observations made in each segment's respective region. 

They provided two different strategies for partitioning 

utilising the quadtree and the data-dependent tree 

architectures (KD-tree). Only noises are necessary for the 

divider in order to safeguard the previous construction. In 

order to determine a private median for the latter structure, 

four different methodologies were suggested  

The exponential technique is used in the division 

procedure in order to provide attributes by means of a 
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taxonomy tree using confidential data. DiffGen releases 

synthetic data after adding noise to leaf node counts. 

NoiseFirst and StructFirst, partition-based models by Xu et 

al. , differ in histogram structure computation and noise 

injection order. The first method obtains noisy cells [22] 

and merges adjacent cells in partitions using noisy counts. 

Second, choose borders using Exponential method and add 

Laplacian noise to the average of these divisions to create 

the optimum histogram. Due to computational complexity, 

these methods work best with low-dimensional data. 

I. Transformation-Based Methods 

Condensing the data into a compact representation (like 

bases, for example), and then manipulating that 

representation in order to generate synthetic data, is 

another approach. 

The work done by Barak et al resulted in a two-step 

improvement being made to a differentially private Fourial 

perturbation algorithm (FPA). After computing a DP 

frequency matrix, they Fourier transformed it to the 

frequency domain by adding Laplacian noises to the 

Fourier coefficients. This brought the transformed matrix 

into the frequency domain. This brought the resulting 

matrix into the frequency domain. In order to produce 

sample fake data, a non-negative frequency matrix is 

reconstructed using linear programming. The fact that this 

model solves a linear programme with the same number of 

variables as the frequency matrix makes computation 

challenging. An enhanced discrete Fourier perturbation 

approach, also known as an EFPA, was developed by Ace 

et al. for differentially private histograms. They were able 

to improve FPA by removing high-frequency components 

and using the intrinsic connection of real-valued histogram 

Fourier coefficients. Additionally, they used a more exact 

score function for the Exponential process. 

Jiang et al. developed a method of linear discriminant 

analysis that is based on principal component analysis. 

Before eigendecomposition, tweak mean and co-variance. 

They reconstructed a synthetic matrix using noisy 

eigenvectors. Too much noise in the co-variance matrix 

makes this technique unsuitable for high dimensions. Xiao 

and colleagues developed the Privelet method by first 

applying a wavelet transformation to the histogram (which 

is an invertible linear function), and then adding 

polylogarithmic noises to the mix. Privelet generates 

synthetic data by transformation, perturbation, and 

reconstruction, like PCA. 

J. Statistical Model-Based Methods 

These methods build statistical models from confidential 

data and then make sample points available to the public. 

Machanavajjhala et al. built a differentially private data 

synthesiser by fitting private data to a multinomial dirichlet 

model and sampling from it. Typical parametric models 

have finite parameters. By employing a wide variety of 

sampling and filtering techniques, Cormode et al. were 

able to generate a compact histogram summary of sparse 

data that was subject to DP. Signals that are weaker than 

the cutoff threshold are weakened using a straightforward 

high-pass filter. This method randomly selects k cells from 

the contingency table that have count values of zero and 

then perturbs and releases every cell in the table that has a 

non-zero count. The values of these selected cells are then 

chosen at random from a particular distribution in order to 

match the output distribution of the baseline technique 

[22]. Two new methods featuring distinct priority 

sampling algorithms were developed as more sophisticated 

techniques. 

The marginal distributions in this semi-parametric model 

are calculated non-parametrically, but the combined 

dependency of each dimension is represented 

parametrically by the correlation matrix. An additional 

method for the production of importance-weighted 

synthetic data was developed by Ji et al. 

Using the methods described above, structured tabular 

data, such as demographics, can be anonymized. It is not 

possible to use previous methods to analyse these data 

because of the noise or the amount of computing required. 

Recent investigations shed light on these concerns, and we 

went over the relevant methodologies. They came up with 

a brand new algorithm for shrinking in order to enforce 

length limits. 

K. Genomic Data Privacy 

The cost of sequencing is going down, which means that 

high-throughput human genetic data may now be obtained 

at a lower cost for use in medical and biological research. 

Massive genomic data collection enables excellent 

diagnostic and treatment discovery. These potentials have 

led to several initiatives. Data based on genomes might 

also reveal information about other people. As a result, the 

potential danger to individuals' privacy may extend to their 

biological relatives [14]. Because of advances in both 

genetic research and hacking techniques, genomic data are 

now irreversible and present serious risks to individuals' 

privacy. The NIH has kept most aggregated results private 

due to privacy concerns [13]. Genome privacy has been 

protected using legal [2], ethical [15] [16], and 

technological [17] [19] means.  

L. Secure Genomic Data Computation 

Users are now able to store and analyse human genomic 

data by making use of cloud-computing services, thanks to 

the most recent modification to the rules governing the 

sharing of data by the National Institutes of Health (NIH). 

This alleviates concerns regarding the effective 

management of large genomic data sets. On the other hand, 

due to the fact that owners no longer have complete control 

over their data, the issue of privacy becomes a more 

pressing worry when cloud computing is used.  

Using task-oriented optimizations (for example, a 

specialised data encoding approach), Lauter et al. [20] 

demonstrated that in order to obtain 80 bits of security, it 

is possible to do an analysis of 1000 genotype and 

phenotypic data in as little as 0.19 seconds to 6.85 seconds. 

Togan et al. [23] do research on the subject of HME-based 

comparisons of integers. HME is only capable of 

accurately computing small-scale edit distances for 

sequence lengths of less than 10. Kim et al. [21] 

demonstrated that HME is capable of providing an 

efficient and safe approximation of edit distance 

computation between two sequences of a length of 10,000 

characters each. This was in reference to the challenges 

that are associated with scalability when utilising HEM. 

Moreover, Graepel et al. [24] and Naehrig [28] 

demonstrated that HME is able to make use of a variety of 

machine learning strategies. A approach for the 

homomorphic calculation of accurate logistic regression in 
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GWAS studies of rare illnesses has been presented by 

Wang et al. [37]. Zhang, Kim, and Lu developed an HME-

based method for computing the chi-squared statistic. 

Although HME-based secure outsourcing solutions for 

public clouds have the appearance of being promising, the 

reality is that HME is computationally intensive and calls 

for a significant amount of storage. There have been a lot 

of studies done on effective solutions that are task-specific. 

For instance, Ayday et al. [18] developed a method that 

protects patients' privacy and enables medical staff to 

access patients' short reads in a manner that is not visible 

to other staff members. Honey encryption is utilised by 

GenoGuard [25] to ward off brute-force assaults and 

preserve genetic data. [26] investigated methods of disease 

susceptibility testing that protected patients' privacy. 

Recent research published in [27] and [29] has proposed a 

wide variety of SMC-based safe genomic data analysis 

methods. A comparison of numerous different 

safeguarding strategies for the safe examination of genetic 

data was provided in Table 2. 

M. Privacy-Preserving Genomic Data Dissemination 

A generalised lattice method that is based on k-anonymity 

was proposed by Malin et al. [30] as a way to anonymize 

genomic sequences and ensure the security of genomic 

data transfer. Phenotypic-genotypic associations are 

safeguarded by the GWAS anonymization methodology 

developed by Loukides et al. [31]. A privacy-preserving 

logistic regression model employing DP was developed by 

Yu et al. [32] for the purpose of GWAS disease association 

identification. In the paper [33], Johnathon and colleagues 

developed a differentially private chi-square test statistic 

by leveraging genetic data. Uhler et al. [34] discovered an 

additional chi-squared test solution under differential 

privacy protection that releases the top M most important 

GWAS SNPs. This solution may be found in [link to 

article]. The Uhler methodology was improved upon by Yu 

et al. [37], [38] by incorporating improved utility and 

privacy tradeoffs as well as formal proofs. When creating 

high-dimensional genomic data, Zhao et al. [39] developed 

a method for the development of synthetic genomic data 

that makes use of linkage disequilibrium, which is a 

method for the reduction of features. This method helps to 

protect the privacy budget. 

N. Privacy-Preserving Parallelization Techniques 

It typically consists of two methods: the Map technique, 

which is used to organise data by mapping input key/value 

pairs to intermediate ones, and the Reduce method, which 

is used to summarise these intermediate pairs. Both of 

these methods are used for real-world activities. However, 

the computational paradigm utilised by the MapReduce 

architecture does not take into account any concerns 

regarding data security [40]. The provision of 

responsibility and access control for users, as well as the 

protection of privacy in computer models, are among the 

problems associated with security and privacy. Tran and 

Sato employed role-based access control (RBAC) and type 

enforcement in order to prevent malevolent MapReduce 

frameworks from leaking sensitive data. This was 

accomplished by enforcing specific data types (TE). 

Accountable MapReduce conducted an Accountability 

Test, also known as an A-Test, with the goal of locating 

rogue machines, which are also referred to as nodes that 

had optimised their resource utilisation in accordance with 

their allocated auditors. In the sense of protection methods, 

differential privacy (DP) and homomorphic encryption 

(HME) are both being researched for use with MapReduce 

in order to protect, respectively, the output and the process 

of aggregated computation. The researchers at Airavat  

coupled the MapReduce architecture with compulsory 

access control and differential privacy in order to ensure 

the safety and confidentiality of the outputs of aggregated 

processing. [21] Han et al. devised the DiffMR technique, 

which processed top-k searches in an exponential way, 

with the intention of preserving the differential privacy that 

had been established. Iterative selection that utilises reject 

rates that are established by the score function is carried 

out so that the accuracy of the query may be ensured even 

when it is applied to massive datasets. Chen et al.  

developed a privacy-protecting distributed technique for 

feature selection that is based on differential privacy. They 

used the MapReduce framework to apply Gini index-based 

approaches to large scale datasets. This allowed them to 

preserve users' privacy. Chen et al. utilised this particular 

algorithm. A heuristic approach to data anonymization was 

proposed by Zhang et al. in order to safeguard the privacy 

of individuals in an efficient manner. This approach finds 

intermediate datasets that are partially encrypted, as well 

as the link that leads back to their origin. When constrained 

optimization is carried out, it is done so with the intention 

of limiting the exposure of private information based on an 

upper bound on the jointly defined quantity of privacy that 

is lost across numerous datasets. This is done. Using a 

method called top-down specialisation (TDS), which is 

based on MapReduce, it is possible to anonymize massive 

datasets. In their paper, Zhang et al. developed a solution 

for hybrid cloud computing that would preserve users' 

privacy while simultaneously carrying out data-intensive 

computations. Sedic was able to modify MapReduce in 

such a way that it could partition the responsibilities 

connected with computing by sending data that had been 

sanitised to the public cloud and sensitive data to a private 

cloud. An Excalibur system was utilised by Santos et al.  in 

their research in order to deliver policy-sealed interim data. 

Customers are responsible for deciding both the encryption 

and the decryption policies. Chen and Huang improved 

MapReduce so that it computes over encrypted 

intermediate data using fully homomorphic encryption. 

This was done by modifying MapReduce (FHE). PHE, 

which stands for parallel homomorphic encryption, is an 

encryption method that was designed with the intention of 

securely outsourcing the computation of massive datasets 

to a cluster of processors. On encrypted datasets, PHE 

made it possible to perform MapReduce operations such as 

element testing and keyword search, which allowed for the 

universal evaluation of parallelizable functions. 

In the realm of genetic research, algorithms that preserve 

users' privacy have been developed for the goals of DNS 

read-mapping, association inquiry, and genomic signature 

search across huge datasets. These algorithms were 

designed for the objectives of using genomic research. The 

tamper-resistant characteristics of FPGAs were utilised to 

preserve intermediate data in MapReduce during the 

process of DNA read-mapping. Chen and colleagues came 

up with a solution that is able to perform hybrid cloud read 

mapping in a way that is both secure and scalable. Raisaro 

et al. came up with the idea for a parallelizable and flexible 
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privacy-preserving architecture for replication and fine-

mapping genetic association studies spanning encrypted 

genotypes and phenotypes. This architecture would protect 

the confidentiality of the data. MapReduce was utilised to 

facilitate the parallelization of encrypted proteomic, 

transcriptomic, and metabolomic datasets. A Hadoop-

based site-wise encryption approach for genomic signature 

discovery from entire human genome data was developed 

by Zhao et al. 

III. CONCLUSION  

Within the scope of biomedical research, we investigated 

a wide range of issues concerning the confidentiality of 

substantial amounts of data. The "big" component of data 

privacy is of the utmost importance since healthcare data 

usually comprise large scale clinical and genetic data. 

These data are huge in both size and dimension, making 

the "big" component of data privacy particularly 

significant. The reason for this is due to the fact that certain 

kinds of data are both huge in size and large in dimension. 

This makes it difficult to work with them. It may be 

difficult to find a solution to these one-of-a-kind problems 

given that they were not taken into account throughout the 

process of developing standard technology. For example, 

when it comes to dealing with whole genome sequencing 

(WGS) data, there are issues with the scalability of 

completely homomorphic encryption as well as secure 

multiparty computing solutions. These problems arise 

because of the complexity of the data involved. Other 

obstacles must be overcome in order to safeguard the 

outcomes of computations carried out on high-dimensional 

genomic data, and these obstacles have the potential to 

rapidly deplete the available resources in the event that 

careful planning is not applied to the process of 

disseminating the findings. We took a look at some of the 

most cutting-edge technologies currently available for 

record linking, synthetic data generation, and genomic data 

analysis, all of which are designed to safeguard individuals' 

privacy. We are of the opinion that a concerted effort from 

a wide variety of communities is necessary in order to find 

effective solutions to limit the privacy risks that are 

associated with biomedical research. Even though a lot of 

progress has been made, there are still a lot of problems 

and new obstacles that need to be handled. This is despite 

the fact that a lot of progress has been made. Despite the 

significant amount of progress that has been accomplished, 

this continues to remain the case (e.g, computer security, 

ELSI, biomedicine, genomics, etc.). 
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