Indian Journal of Extension Education Vol. 52, No. 1 & 2, 2016 (87-90)

Identification of Constraints in Adoption of Improved Dairy Farming Practices in Bundi District of Rajasthan

B. L. Dhaka¹ and G. S. Meena²

ABSTRACT

Dairying has been recognized as a remunerative source of income in India. But the productivity of dairy animals is very low. Despite widespread availability, adoption of these technologies in the dairy farming has been relatively sparse so far. The adoption of recommended dairy farming practices, therefore, becomes a pre-requisite for sustained growth and development of dairy farming. But low adoption of modern dairy farming technologies amongst farmers has been identified as one of the main reasons for the low productivity in the country. Realizing the fact present study was undertaken with the objective to gain new insight into constraints in adoption of improved dairy farming practices. The study was conducted in Bundi district of Rajasthan. Results of study showed that lack of knowledge, poor extension support, poor credit support, lack of proper communication system, non-availability of desired technology, complexity of practices, high cost of inputs, and lack of conviction were the major constraints perceived by farmers in adoption of improved dairy farming practices.

Keywords: Adoption, constraints, technology, farmer, dairy farming

INTRODUCTION

Dairving has been recognized as a remunerative source of income in India. Milk production in India is predominantly the domain of small farmers in mixed farming system. Scientific dairy management helps the farmer to channelize his limited resources to maximize returns from his dairy farm. Dairying has been regarded as one of the activities that could contribute to alleviating the poverty and unemployment especially in the drought prone and rain fed areas. The importance of dairy not only lies in products but also it brings about significant changes in socio-economic structure of rural economy. In India, dairying is recognized as an instrument for social and economic development. But, unfortunately in spite of several years of planed efforts, the pace of development is not uniform in different parts of the country (Kumar et al. 2011). The rapid growth of milk production in India has been mainly because of the increase in the number of animals rather than that of improved productivity (Patil et al. 2009). In India, low animal productivity results due to reasons that the farmers do not adopt improved dairy management practices at the desired level. Despite widespread availability, adoption of these technologies in the dairy farming has been relatively sparse so far. Although serious efforts to transfer the scientific dairy

farming practices to the farmers have been made yet various studies indicates that farmers have adopted only 30 per cent of the technologies that too by resourceful farmers (Murai and Singh, 2011). The adoption of recommended dairy farming practices, therefore, becomes a pre-requisite for sustained growth and development of dairy farming. But low adoption of modern dairy farming technologies amongst farmers has been identified as one of the main reasons for the low productivity in the country. Unravelling the reasons for low technology adoption among farmers requires that the factors that influence their decisions to adopt or not to adopt modern agricultural production technologies be identified. Realizing the fact present study was undertaken with the objective to gain new insight into constraints faced by farmers in adoption of improved dairy farming practices in Bundi district of Rajasthan.

METHODOLOGY

The study was conducted in Bundi district of Rajasthan. The constraints in adoption of improved dairy farming practices were identified through a pilot study. The intensity of the identified constraints in the actual field situation was measured to prove their validity and to find out the extent to which they were perceived by

¹ Corresponding Author Krishi Vigyan Kendra, Bundi, Rajasthan

farmers. In all 250 farmers were interviewed with the help of a well-structured and pre-tested interview schedule developed for the study. The data thus collected were tabulated and statistically analyzed to interpret the results. The quantification of data was done by first ranking the constraints in adoption of improved dairy farming practices based on the responses obtained from the respondents and then calculating the Rank Based Quotient (RBQ) (Sabarathnam, 1988), which is as follows

R.B.Q. =
$$\frac{\sum fi(n+1-1)}{N \times n} \times 100$$

Wherein,

fi = Number of farmers reporting a particular problemunder ith rankN = number of farmers

n = number of problems identified

To assess the validity of constraints in adoption of improved dairy farming practices felt by farmers, 25 key informants were asked to read each constraint with their rational for its relevance and their opinion on possible relevance of these reasons was sought on a three point continuum of 'relevant', 'partial relevant' and 'irrelevent' with a score of 2, 1, and 0, respectively. Based on this assessment, the scientific relevance score for each constraint was estimated by using:

$$P = \frac{\sum_{i=1}^{N} X_i}{2N} \quad 0 \le P_i \le 1$$

where, N = Number of key informants

Xi = 2 if ith reason is relevant

= 1 if ith reason is somewhat relevant

=0 if ith reason is irrelevant

RESULT AND DISCUSSION

Socio economic characteristics of respondents

A profile of socio economic characteristics of respondent farmers is presented in Table 1. The majority (56.4%) of the respondents belonged to middle age group followed by old age (28.8%) and young age (14.8%) group. Results revealed that majority of respondents were functionally literate (up to middle class) (58.0%) followed by high school (26.0%) and illiterate (9.2%). Whereas, only 6.8 per cent respondents had education higher than the high school level. It was observed that 44.8 percent farmers fell under the category of low

knowledge and 39.6 per cent belonged to the category of medium knowledge about various aspects of livestock production. Out of total 250 respondents interviewed, 42.8 per cent had a low exposure to the mass media followed by 38.4 per cent and 18.8 per cent had medium and high exposure to the mass media, respectively. Results on land holding show that nearly 80.00 per cent of respondents were marginal (33.6 %) to small and semimedium (50.4 %) farmers. Further, it was also observed that majority of respondents were resource poor (54.4 %). The study also showed that the percentage of respondents having non descriptive animal was very high (66.8), whereas only 12.8 per cent of respondent had crossbred animals. Consequently the milk production of majority of the respondents fell under low level (55.2 %) to medium level (34.4%).

Table 1: Socio	economic	profile	of 1	respondent	farmers
					n=250)

Variables	Category	Frequency	Percentage
Λ_{qe} (in years)	Young (<30)	37	14.8
Age (in years)	Middle (31-50)	141	56.4
	Old (>50)	72	28.8
Education	Illiterate	23	9.2
Education	Functional literate (up to middle class)	145	58.0
	High school	65	26.0
	Graduate and above	17	6.8
Knowladga laval	Low	112	44.8
Kilowledge level	Medium	99	39.6
	High	39	15.6
Mass media exposure	Low	107	42.8
wass media exposure	Medium	96	38.4
	High	47	18.8
Land Holdings (in ha)	Marginal (<1ha)	84	33.6
Land Holdings (in na)	Small (1-2 ha) & Semi-medium (2-4 ha) 126	50.4
	Medium (4-10 ha)	27	10.8
	Large (>10 ha)	13	5.2
Pasourcefulness	Rich	47	18.8
Resourcerumess	Medium	67	26.8
	Poor	136	54.4
Herd composition	Non descript	167	66.8
field composition	Improved breed	51	20.4
	Both	32	12.8
Milk production	Low	138	55.2
with production	Medium	86	34.4
	High	26	10.4

Constraints

In order to take advantage of promising opportunities of dairy farming, the farmers need to overcome a number of impediments related to adoption of dairy farming practices. During the study it was observed that farmers are being faced an array of specific constraints in adoption of good dairy farming practices.

The constraints in adoption of dairy farming practices reported by respondents presented in Table 2 along with Rank Based Quotient (RBQ) for each constraint and respective rank.

Table 2: Different Reasons of Slow Adoption of Dairy Farming Practices

	n=250
Ranks	R.B.Q Overall

Reasons		Ranks				R.B.Q	Overall			
	I	п	ш	IV	v	VI	VI	wi	I	Rank
Lack of knowledge	71	59	42	29	17	19	13	0	76.45	Ι
Lack of proper communication system	29	27	34	36	41	41	15	27	57.45	IV
Poor extension support	57	47	31	32	23	23	27	10	67.80	Π
Poor credit support	27	33	37	47	34	27	35	10	60.05	III
Non-availability of desired technology	17	26	29	37	41	33	34	33	52.05	V
High cost of inputs	19	23	27	22	27	23	41	68	45.60	VII
Lack of conviction	9	13	21	26	37	47	51	46	42.80	VIII
Complexity of practices	21	22	29	21	30	37	34	56	47.80	VI

Lack information: Lack of knowledge about various aspects good dairy farming practices including housing, breeding, feeding, health care and general care and management stand on the way of adoption of new technology. Lack of awareness and knowledge about certain technologies was the response given by the respondents with regards to adoption of recommended technologies in their farm. Due to unawareness of existing technology and lack of knowledge about use of practices, farmer were not able to adopt in due time and it was identified as the major reasons of slow of adoption (Table 2). Based on RBQ (76.45) value, lack of knowledge was given first rank among various reasons of lack or slow adoption of dairy farming practices. Similarly, Kumar et al. (2011), Murai and Singh (2011), Singh and Varshney (2010), Singh and Chauhan (2006), Mohi and Bhatti (2006) and Rathore et al. (2009) also reported lack of knowledge as the major constraint in adoption of dairy farming practices.

Poor extension support: Weak extension activities at village level, lack of information supply and services offered by the State and Central Governments were the concerns expressed by the respondents. The respondents reported that the dairy farmers depend upon the technical persons for adopting technologies/practices including artificial insemination (AI), pregnancy diagnosis, vaccination, de-worming, diagnosis and treatment of animals. Un-availability of technical support at the time required adversely affected the adoption of improved dairy farming practices. Based on RBQ (67.80) poor extension support was identified as second most important constraint in adoption of dairy farming practices. The results were in the line of the conformity with the results reported by Quddus (2012), Dhaka et al. (2011) and Kumar et al. (2011).

Poor credit support: It was reported by respondents that

many of the farmers do not had their own capital for purchase of new technology. They had to depend on borrowed capital. Very little farmers have access to institutional credit. The main reason of this inadequacy of bank credit, as reported by sample farmers, is their lack of collateral due to their poor asset base and complex loaning procedure. Most of the farmers, being poorly educated, do not know the procedure of borrowing from nationalized banks. Whereas, non-institutional sources of capital are insufficient and bear exorbitant rates of interest. So poor credit support reported as third most important constraint (RBQ, 60.05). These results are in close conformity with the findings of Quddus (2012).

Lack of conviction: Lack of conviction in new technology was reported as one of the constraints by the respondents. Most of the respondents were not convinced about the merits of some of the dairy farming technologies and did not adopt them as they were unsure of proportionate increase in production. These results corroborated with the findings of Singh and Varshney (2010).

Non-availability of desired technology: Non-availability of desired technology was seen as a constraint by the respondents in dairy farming. Non-availability of suitable high yielding breeds in local area was the most important concern reported by the respondents. Quddus (2012) and Singh and Varshney (2010) also reported similar results.

High cost of inputs : High cost of inputs as a constraint was expressed by the respondents. High cost of concentrate and other feeds, high cost of high yielding breeds of animals and high cost of medicines reported as their constraints. Quddus (2012), Patil et al. (2009) and Veeraswamy et al. (2003) reported similar constraints perceived

Lack of proper communication system : Lack of proper communication system was reported as a constraint by the respondents. Due to the inadequacy of agricultural programmes on radio and television, print publications, farm and home visit etc., the respondents were not aware of production potential of technologies, yield gap and how to eliminate it. These results are in agreement with those reported by Quddus (2012).

Complexity: Complexity of some dairy farming practices observed another important determinants in adoption by many farmers and given forth rank (Table 2). Many dairy farming practices are complex and require a detailed understanding of processes. Complexity makes

the innovation more difficult to understand, and generally requires greater management skills (Vanclay, 1992).

Validation of constraints

Farmers reported number of constraints in adoption of good dairy farming practices. In order to testing validity of reasons behind constraints in adoption of good dairy farming practices, scientific relevance score for each constraint was calculated and presented in Table 3. The scientific relevance score indicates reasonable basis for reason of slow adoption of dairy farming practices.

It is evident from Table 3 that the scientific relevance score associated with lack of knowledge and poor extension support was found 0.74 and 0.72, respectively. Similarly, the scientific relevance score of all other reasons of slow adoption reposted by respondent farmers was found more the 0.5. This indicates reasonable basis behind slow adoption of dairy farming practices by the respondent farmers.

Table 3: Scientific relevance score of reasons of slow adoption

Reasons	Scientific Relevance Score
Lack of knowledge	0.74
Lack of proper communication system	0.54
Poor extension support	0.72
Poor credit support	0.64
Non-availability of desired technology	0.54
High cost of inputs	0.68
Lack of conviction	0.52
Complexity of practices	0.56

CONCLUSION

It may be concluded that lack of knowledge, poor extension support, poor credit support, lack of proper communication system, non-availability of desired technology, complexity of practices, high cost of inputs, and lack of conviction were the major reasons of non/slow adoption of dairy farming practices. Therefore, it was necessary to intensify the extension efforts to increase the knowledge level and adoption of recommended good dairy farming practices at farm level.

Paper received on	:	Oct. 05, 2015
Accepted on	:	Oct. 25,2015

REFERENCE

Dhaka, B. L.; Chayal, K. and Poonia, M. K. 2011. Identification of constraints limiting the productivity of livestock and strategies for its improvement in Bundi district of Rajasthan. *Indian Journal of Animal Sciences*, 81(1):94-96.

Kumar, J.; Kumar, B. and Kumar, S. 2011. Constraints Perceived by Farmers in Adopting Scientific Dairy Farming. Practices in Madhuni district of Bihar. *Research Journal of Agricultural Sciences*, 2(1): 142-145.

Mohi A K and Bhatti J S. 2006. Constraints encountered by dairy farmers in adoption of improved dairy farming practices. *Journal of Dairying Foods and Home Sciences*, 25(1): 47–50.

Murai, A. S. and Singh, B. K. 2011. Differential Adoption of Scientific Dairy Farming Practices and Related Constraints. *Indian Res. J. Ext. Edu.*, 11 (2):46-49.

Patil, A.P.; Gawande, S.H.; Nande, M.P. and Gobade, M.R. 2009. Constraints Faced by the Dairy Farmers in Nagpur District while Adopting Animal Managenment Practices. *Veterinary World*, 2(3):111-112.

Quddus, M. A. 2012. Adoption of dairy farming technologies by small farm holders: practices and constraints. *Bang. J. Anim. Sci.*, 41 (2): 124-135.

Rathore R S, Singh R, Kachwaha R N and Kumar R. 2009. Constraints perceived by cattle keepers in adoption of recommended breeding, feeding and housing management practices. *Indian Journal of Animal Sciences*, 79(5): 530–33.

Singh M and Chauhan A. 2006. Constraints faced by dairy owners in adoption of scientific dairy farming practices. *Indian Journal of Dairy Science*, 59(1): 49–51.

Singh, P.K. and Varshney J. G. 2010. Adoption Level and Constraints in Rice Production Technology. *Indian Res. J. Ext. Edu.*, 10(1):91:94.

Vanclay, F. 1992. The social context of farmers' adoption of environmentally sound farming practices. In: G. Lawrence, F. Vanclay and B. Furze (Eds), Agriculture, Environment and Society. Melbourne, Macmillan.

Veerasamy. S; Satpathy.C. and Rao G.A. 2003. Constraints of rice production in Orissa. *Indian J. Ext. Edu.*,33 (142) 58-63.