Effect of Dietary Rumen Protected Methionine on Postpartum Fertility Parameters in Multiparous Dairy Buffaloes (Bubalus bubalis)

Authors

  • Sagar Ranjan Department of Veterinary Gynaecology and Obstetrics,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Prahlad Singh Department of Teaching Veterinary Clinical Complex,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Navdeep Singh Department of Veterinary Gynaecology and Obstetrics,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Narinder Singh Department of Veterinary Gynaecology and Obstetrics,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Mrigank Honparkhe Department of Veterinary Gynaecology and Obstetrics,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Ravinder Singh Grewal Department of Animal Nutrition,Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India
  • Jitender Mohindroo Department of Veterinary Surgery and Radiology Guru Angad Dev Veterinary and Animal Sciences University Ludhiana-141004, Punjab, India

DOI:

https://doi.org/10.48165/ijar.2022.43.2.9

Keywords:

Buffaloe, Corpus Luteum (CL), Dominant Follicle (DF), Estroge, Murrah, Rumen Protected Methionine (RPM)

Abstract

Present study was planned to assess dietary supplementation of rumen protected methionine (RPM) peripartum on blood profile and postpartum reproductive outcome in 18 multiparous Murrah buffaloes. Animals were randomly assigned to 3 treatment groups of 6 each, and fed diets supplemented with RPM 20 g day-1 (Group 1); 10 g day-1 (Group 2), and standard control diet (Group 3). RPM feeding was introduced from day 30 prepartum till day 60 postpartum. Progesterone, estradiol, IGF-I, and biochemical parameters were estimated starting day 21 prepartum to day 57 postpartum. Size of dominant follicle and corpus luteum were assessed across the treatment days postpartum. Progesterone concentration varied from 0.32±0.06 to 3.85±0.44 ngml-1, 0.41±0.05 to 2.03±0.12 ngml-1, and 0.35±0.08 to 1.82±0.11 ngml-1 in Groups 1, 2 and 3, respectively. Corresponding estradiol levels ranged from 16.00±1.09 to 243.16±4.67 pgml-1, 13.16±0.60 to 228±5.06 pgml-1, and 13.66±0.66 to 218.9±4.36 pgml-1 and IGF-I from 77.83±8.81 to 149.50±4.69 ngml-1, 77.33±2.95 to 128.41±3.85 ngml-1, and 62.66±2.20 to 124.50±5.57 ngml-1 in Groups 1, 2 and 3, respectively. Variations in blood glucose, BUN and creatinine were observed across the days in all the treatment groups. Estrogen to progesterone (E/P) ratio varied (p<0.05) among the treatment groups. Lower values of E/P in Group 1 were depictive of estrogen dominance, whereas higher E/P in Group 3 signified dominance of progesterone. Conception rates in Groups 1, 2 and 3 were 83.33%, 50.00% and 33.33%, respectively. Varying (p<0.05) progesterone and estradiol levels were indicative of positive role of dietary RPM. Dietary RPM improved follicular structures and increased production and reproduction outcomes.

References

Ahmed, S., Gohar, M., Khalique, A., Ahmad, N., Shahzad, F., Rahman, A., and Khan, M.I. (2016). Effect of supplementation of rumen protected lysine and methionine on production performance, milk and blood parameters of early lactating Nili-Ravi buffaloes. Pak J. Zool., 48(2): 359-363.

Ayyat, M.S., Al-Sagheer, A., Noreldin, A.E., Abd El-Hack, M.E., Khafaga, A.F., Abdel-Latif, M.A., ... and Salem, A.Z. (2021). Beneficial effects of rumen-protected methionine on nitrogen-use efficiency, histological parameters, productivity and reproductive performance of ruminants. Anim. Biotech., 32(1): 51-66.

Berthiaume, R., Dubreuil, P., Stevenson, M., McBride, B. W., & Lapierre, H. (2001). Intestinal disappearance and mesenteric and portal appearance of amino acids in dairy cows fed ruminally protected methionine. J. Dairy Sci., 84(1), 194-203.

Berthiaume, R., Thivierge, M. C., Patton, R. A., Dubreuil, P., Stevenson, M., McBride, B. W., & Lapierre, H. (2006). Effect of Ruminally Protected Methionine on Splanchnic Metabolism of Amino Acids in Lactating Dairy Cows. J. Dairy Sci., 89(5), 1621–1634.

Bonilla, L., Luchini, D., Devillard, E., & Hansen, P. J. (2010). Methionine requirements for the preimplantation bovine embryo. Journal of Reproduction and Development, 56 (5), 527.

Brosnan, J. T., Brosnan, M. E., Bertolo, R. F., & Brunton, J. A. (2007). Methionine: a metabolically unique amino acid. Livest. Sci., 112(1-2), 2-7.

Giallongo, F., Harper, M. T., Oh, J., Lopes, J. C., Lapierre, H., Patton, R. A., ... & Hristov, A. N. (2016) Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows. J. Dairy Sci., 99(6), 4437-4452.

Groebner, A. E., Rubio-Aliaga, I., Schulke, K., Reichenbach, H. D., Daniel, H., Wolf, E., ... & Ulbrich, S. E. (2011). Increase of essential amino acids in the bovine uterine lumen during preimplantation development. Reproduction, 141(5), 685.

Jacometo, C. B., Zhou, Z., Luchini, D., Trevisi, E., Corrêa, M. N., & Loor, J. J. (2016). Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci., 99(8), 6753-6763.

Krehbiel, C. R., Berry, B. A., Reeves, J. M., Gill, D. R., Smith, R. A., Step, D. L. & Ball, R. L. (2001). Effects of feed additives fed to sale barn-origin calves during the receiving period: Animal performance, health and medical costs. Okla. Agr. Exp. Stn. https://extension.okstate.edu/programs/beef-extension/research-reports/site-files/documents/2001/krehbiel.pdf

Kröber, T. F., Külling, D. R., Menzi, H., Sutter, F., & Kreuzer, M. (2000). Quantitative effects of feed protein reduction and methionine on nitrogen use by cows and nitrogen emission from slurry. J. Dairy Sci., 83(12), 2941-2951.

Movaliya, J. K., Dutta, K. S., Padodara, R. J., Bhadaniya, A. R., & Savsani, H. H. (2013). Effect of bypass methionine-lysine supplementation on haematological and blood biochemical parameters of Jaffarabadi heifers. Vet.World, 6(3), 147.

Nanda, A. S., Brar, P. S., & Prabhakar, S. (2003). Enhancing reproductive performance in dairy buffalo: major constraints and achievements. Reproduction-Cambridge-Supplement-, 27-36.

Preynat, A., Lapierre, H., Thivierge, M. C., Palin, M. F., Matte, J. J., Desrochers, A., & Girard, C. L. (2009). Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J. Dairy Sci., 92(2), 677–689.

Roy, K.S., and Prakash, B.S. (2009). Plasma progesterone, oestradiol-17β and total oestrogen profiles in relation to oestrous behaviour during induced ovulation in Murrah buffalo heifers. J. Anim. Physiol. & Anim. Nutr., 93(4): 486-495.

Toledo, M. Z., Baez, G. M., Garcia-Guerra, A., Lobos, N. E., Guenther, J. N., Trevisol, E. & Wiltbank, M. C. (2017). Effect of feeding rumen-protected methionine on productive and reproductive performance of dairy cows. PLoS One, 12(12), e0189117.

Vudmaska, I., Petrukh, I., Sachko, S., Vlizlo, V., Kosenko, Y., Kozak, M., and Petruk, A. (2021). Using hop cones, vitamin E, methionine, choline and carnitine for treatment of subclinical ketosis in transition dairy cows. Adv. Anim. Vet. Sci, 9(1): 55-62.

Waterman, R.C., Sawyer, J.E., Mathis, C.P., Hawkins, D.E., Donart, G.B. and Petersen, M.K. (2006). Effects of supplements that contain increasing amounts of metabolizable protein with or without Ca-propionate salt on postpartum interval and nutrient partitioning in young beef cows. J. Anim. Sci., 84(2): 433-446.

Published

2022-11-11

How to Cite

Ranjan, S., Singh, P., Singh, N., Singh, N., Honparkhe, M., Grewal, R.S., & Mohindroo, J. (2022). Effect of Dietary Rumen Protected Methionine on Postpartum Fertility Parameters in Multiparous Dairy Buffaloes (Bubalus bubalis). The Indian Journal of Animal Reproduction, 43(2), 40–46. https://doi.org/10.48165/ijar.2022.43.2.9