Effect and Strategies to Mitigate the Heat Stress on Buffalo Bull Reproduction

Authors

  • J. Arunpandian Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • N. Srivastava Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • G. Singh Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • S. K. Gupta Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • A. Kujur Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • G. Aswini Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122
  • A. Jackson Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243 122

DOI:

https://doi.org/10.48165/ijar.2021.42.2.2

Keywords:

Spermatozoa, ROS, lipid per oxidation, heat stress, free radicals

Abstract

Heat stress (HS) is hazardous to the physiological functioning of reproductive  organs, as well as for the optimum production of spermatozoa quality and quantity.  During the summer animals suffer from HS due to an elevated environmental  temperature causing increased testicular temperature resulting in accelerated  free radicals generation. The mammalian spermatozoa are more vulnerable to  free radical damage primarily because the sperm membrane contains cholesterol,  sterols and polyunsaturated fatty acids. Certain levels of reactive oxygen species  (ROS) are required for variety of physiological processes such as acrosome reaction,  capacitation and fertilization. On the other hand, when the ROS levels are elevated,  pathological condition are produced with the formation of lipid peroxidase,  affecting the sperm membrane integrity and leads to leakage of intracellular  contents. This is followed by abolished structural integrity, sperm motility and  viability. As a result, during the summer, the volume of semen produced is low,  with poor seminal characteristics. There are several methods to mitigate the HS  of the animal such as physically constructing a shade, sprinkler and cooling fan,  which facilitates conducive environment around the animals and help to reduce  the heat stress. Moreover, certain semen additives can also be added to minimize  the detrimental effects of HS post facto. The present review elucidates mechanism  of HS genesis, changes occurring in spermatozoa morphology and amelioration of  damaging effects of HS by application of various protocols.  

References

Alam, S. S., El Makawy, A. I., Tohamy, A. A., and AbdElrahman, M. M. (2015).Effect of seasonal variations on semen qual ity and fertility of Egyptian water Buffalo (Bubalus bubalis) bulls. Res. J. Pharm. Biol. Chem. Sci. 6(6), 1059–1069.

Bamba, K. and Cran, D.G., (1988). Further studies on rapid dilution and warming of boar semen. Reproduction, 82(2).509-518. Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P.,

Ronchi, B. and Nardone, A. (2010). Metabolic and hor monal acclimation to HS in domesticated ruminants. Animals, 4(7), 1167-1183.

Bhakat, M., Mohanty, T. K., Gupta, A. K., Prasad, S., Chakravarty, A. K. and Khan, H. M. (2015). Effect of season on semen quality parameters in Murrah buffalo bulls. Buff. Bull., 34(1), 100–112.

Bilodeau, J.F., Blanchette, S., Gagnon, C. and Sirard, M.A. (2001). Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 56(2), 275-286.

Bisla, A., Honparkhe, M. and Srivastava, N. (2022). A review on applications and toxicities of metallic nanoparticles in mammalian semen biology. Andrologia, e14589.

Bisla, A., Ramamoorthy, M., Rautela, R., Yadav, V., Kumar, A., Ghosh, S.K. and Srivastava, N. (2020b). Comparative effi cacy of PercollTM discontinuous density gradient centrifu gation and glass wool filtration techniques for spermatozoa selection in buffalo (Bubalus bubalis). J. Anim. Res., 10(2), 181-188.

Bisla, A., Rautela, R., Yadav, V., Saini, G., Singh, P., Ngou, A.A., Kumar, A., Ghosh, S., Kumar, A., Bag, S. and Mahajan, S. (2021). Synthesis of iron oxide nanoparticles–antiubiquitin antibodies conjugates for depletion of dead/damaged sper

matozoa from buffalo (Bubalus bubalis) semen. Biotech. App. Biochem., 68(6), 1453-1468.

Bisla, A., Rautela, R., Yadav, V., Singh, P., Kumar, A., Ghosh, S., Kumar, A., Bag, S., Kumar, B. and Srivastava, N. (2020a). Nano‐purification of raw semen minimises oxidative stress with improvement in post‐thaw quality of buffalo sperma

tozoa. Andrologia, 52(9), e13709.

Bohmanova, J., Misztal, I. and Cole, J.B. (2007). Temperature humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci., 90(4), 1947-1956.

Butt, M.A., Shahid, M.Q., Bhatti, J.A. and Khalique, A. (2019). Effect of dietary vitamin e and selenium supplementation on physiological responses and reproductive performance in holsteinfriesian bulls during humid hot summer. Pak. Vet. J. 39, 593-597.

Chikkagoudara, K. P., Singh, P., Barman, D., Potshangbam, C., Bhatt, N., Singh, S. V. and Lathwal, S. S. (2020). Eye tem perature, an indicator for stress levels in young buffalo bulls-A case study of micro-environment modification.J. Agrometeorol. 22(3), 266–273.

Collier, R. J., Renquist, B. J. and Xiao, Y. (2017). A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci., 100(12), 10367–10380.

Deb, R., Sajjanar, B., Singh, U., Kumar, S., Singh, R., Sengar, G. and Sharma, A. (2014). Effect of heat stress on the expres sion profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus× Bos taurus) breed of cattle: a com parative study. Gene, 536(2), 435-440.

Gadea, J., Sellés, E., Marco, M.A., Coy, P., Matás, C., Romar, R. and Ruiz, S. (2004). Decrease in glutathione content in boar sperm after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology, 62(3-4). 690-701.

Gonçalves, A.A., Garcia, A.R., RolimFilho, S.T., da Silva, J.A.R., de Melo, D.N., Guimarães, T.C., Tavares, H.R., Silva, T.V.G., de Souza, E.B., Santos, S.D.S.D. and Ohashi, O.M. (2021).

Scrotal thermoregulation and sequential sperm abnormali ties in buffalo bulls (Bubalusbubalis) under short-term heat stress. J. Therm. Bio. 96,102842.

Sharma, M., Yaqoob, B., Singh, A., Sharma, N. and Rawat, S. (2017). Effect of temperature humidity index on semen quality of bovine bull. Int. J. Cur. Microbiol. Appli. Sci. 6(12), 1822–1830.

Sharma, R.K. and Agarwal, A. (1996).Role of reactive oxygen species in male infertility. Urology, 48(6).835-850. Sierens, J., Hartley, J.A., Campbell, M.J., Leathem, A.J.C. and Woodside, J.V., (2002). In vitro isoflavone supplementa tion reduces hydrogen peroxide‐induced DNA damage in sperm. Teratog. Carcinog. Mutagen., 22(3).227-234. Silva, L. K. X., Sousa, J. S., Silva, A. O. A., Lourenço Junior, J. D. B., Faturi, C., Martorano, L. G., and Garcia, A. R. (2018). Testicular thermoregulation, scrotal surface temperature patterns and semen quality of water buffalo bulls reared in a tropical climate. Andrologia, 50(2), e12836.

Slimen, B. I., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., &Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage.A review. Int. J. Hyper., 30(7), 513-523.

Srivastava, N. and Pande, M. (2017).Evaluating damage to sperm DNA.In protocols in semen biology (Comparing

assays) Srivastava N, Pande M Eds. Springers Publication, Singapore. 205-215

Tripodi, L., Tripodi, A., Mammi, C., Pulle, C. and Cremonesi, F.(2003). Pharmacological action and therapeutic effects of glutathione on hypokinetic spermatozoa for enzymatic-de pendent pathologies and correlated genetic aspects. Clin. Exp. Obstet. Gynecol. 30(2-3), 130-136.

Vale, W. G. (2007). Effects of environment on buffalo reproduc tion. Italian J. Anim. Sci., 6(sup2), 130–142.

Wang, Y., Huang, J., Xia, P., He, J., Wang, C., Ju, Z., Li, J., Li, R., Zhong, J. and Li, Q., (2013).Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Mol. Bio. Rep. 40(6), 3877-3882.

Yousef, M. K. (1985). Stress physiology in livestock. Volume I. Basic principles. CRC press.

Zhang, J., Robinson, D., & Salmon, P. (2006). A novel function for selenium in biological system: selenite as a highly effec tive iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol. Bioeng. 95(6), 1188-1197.

Gündoğan, M. (2006).Some reproductive parameters and semi nal plasma constituents in relation to season in Akkaraman and Awassi rams.Turkish J. Vet. Anim. Sci., 30(1), 95–100.

Hansen, C., Madej, M. and Madej, A. (2013). Profile of semi nal plasma proteins in relation to boars fertility-a pilot study. In Program and Abstract Book of the 9th International Conference on Pig Reproduction.

Hu, J.H., Tian, W.Q., Zhao, X.L., Zan, L.S., Wang, H., Li, Q.W. and Xin, Y.P., (2010). The cryoprotective effects of ascor bic acid supplementation on bovine semen quality. Anim. Reprod. Sci. 121(1-2). 72-77.

Kastelic, J. P., Wilde, R. E., Rizzoto, G. and Thundathil, J. C. (2017). Hyperthermia and not hypoxia may reduce sperm motility and morphology following testicular hyperther mia. Vet. Med. 62(8), 437-442.

Kumar A, Katiyar R, Das G, Omer Din, Kumar A, Srivastava N, Amion BY, Prasad JK, Mustapha AR, Verma M. R. and Ghosh S.(2018).Reduction of dissolved oxygen in semen extender through nitrogen gassing reduces oxidative stress and improves post-thaw semen quality of crossbred bull. Anim. Reprod. Sci.197: 162-169

Kumar, A., Ghosh, S.K., Katiyar, R., Rautela, R., Bisla, A., Ngou, A.A., Pande, M., Srivastava, N. and Bhure, S.K. (2021). Effect of Mito-TEMPO incorporated semen extender on physico-morphological attributes and functional mem

brane integrity of frozen thawed buffalo spermatozoa. Cryoletters, 42(2),111-119.

Kumar, A., Kumar Ghosh, S., Katiyar, R., Gemeda, A.E., Rautela, R., Bisla, A., Srivastava, N., Kumar Bhure, S., Devi, H.L. and Chandra, V. (2022). Supplementation of Mito TEMPO and acetovanillone in semen extender improves freezability of buffalo spermatozoa. Andrology, 10(4), 775-788.

Kumar, A., Prasad, J. K., Srivastava, N. and Ghosh, S. K. (2019). Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mam malian spermatozoa. Biopreserv. Biobank., 17(6), 603-612.

Losano, J.D., Angrimani, D.S., Dalmazzo, A., Rocha, C.C., Brito, M.M., Perez, E.G., Tsunoda, R.H., Góes, P.A., Mendes, C.M., Assumpção, M.E. and Barnabe, V.H. (2018). Effect of vitamin E and polyunsaturated fatty acids on cryopre

served sperm quality in Bostaurus bulls under testicular heat stress. Anim. Bio., 29(2), 100-109.

Luño, V., Martínez, F., Borobia, M., Hörndler, C. and Gil, L. (2020). Sperm tail defects and abnormal testicular blood flow in a Beagle dog: A case report. Top. Comp. Anim. Med., 38: 100371.

Mandal, D. K., Tyagi, S. and Mathur, A. K. (2005).Semen pro duction performance of Sahiwal bulls. Indian J. Anim. Sci., 75(1): 17–19.

Marai, I. F. and Haeeb, A. A. M. (2010). Buffaloes’ reproduc tive and productive traits as affected by heat stress. Trop. Subtrop. Agroecosystems, 12(2), 193–217.

Marai, I. F. M., El-Darawany, A. A., Fadiel, A. and Abdel-Hafez, M. A. M. (2008). Reproductive performance traits as affected by HS and its alleviation in sheep. Trop. Subtrop. Agroecosystems, 8(3), 209–234.

Ngou, A.A., Ghosh, S.K., Prasad, J.K., Katiyar, R., Kumar, A., Rautela, R., Bisla, A., Srivastava, N. and Kumar, A. (2020). Exploring the role of E. coli derived enzyme, Oxyrase, as an oxygen scavenger to improve the cryotolerance of sperma

tozoa of Sahiwal bull. Cryobiology, 97, 85-92.

Nichi, M., Bols, P.E.J., Züge, R.M., Barnabe, V.H., Goovaerts, I.G.F., Barnabe, R.C. and Cortada, C.N.M., (2006). Seasonal variation in semen quality in Bosindicus and Bostaurus bulls raised under tropical conditions. Theriogenology, 66(4), pp.822-828

Niki, E. (1987). Interaction of ascorbate and alpha-tocopherol. Ann. Acad. Sci., 498, 186–199.

Pande, M. and Srivastava, N. (2017). Determination of oxida tive stress in spermatozoa.In protocols in semen biology (Comparing assays) Srivastava, N. and Pande, M. (Eds). Springers Publication, Singapore. 156-166

Rahman, M.B., Schellander, K., Luceño, N. L. and Van Soom, A. (2018). HS responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology, 113, 102– 112.

Rahman, M.B., Vandaele, L., Rijsselaere, T., Maes, D., Hoogewijs, M., Frijters, A., Noordman, J., Granados, A., Dernelle, E., Shamsuddin, M., Parrish, J. J. and Van Soom, A. (2011). Scrotal insulation and its relationship to abnormal mor

phology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology, 76(7), 1246–1257.

Rautela, R., Srivastava, N., Bisla, A., Singh, P., Kumar, A., Ngou, A.A., Katiyar, R., Ghosh, S.K. and Bag, S. (2022). Nano depletion of morbid spermatozoa up-regulate Ca2+ chan nel, depolarization of membrane potential and fertility in buffalo. Cryobiology, 109, 20-29.

Rhoads, R. P., Baumgard, L. H., Suagee, J. K. and Sanders, S. R. (2013). Nutritional interventions to alleviate the negative consequences of heat stress. AdvNutr (Bethesda, Md.), 4(3), 267–276.

Sarlos, P., Molnar, A., Kokai, M., & et al. (2002). Comparative evaluation of the effect of antioxidants in the conservation of ram semen. Act. Vet. Hun. 50(2), 235-245.

Downloads

Published

2021-11-11

How to Cite

Arunpandian, J., Srivastava, N., Singh, G., Gupta, S.K., Kujur, A., Aswini, G., & Jackson, A. (2021). Effect and Strategies to Mitigate the Heat Stress on Buffalo Bull Reproduction . The Indian Journal of Animal Reproduction, 42(2), 8–16. https://doi.org/10.48165/ijar.2021.42.2.2