Quality and Biochemical Characteristics of Frozen Semen of Purebred and Crossbred Bulls
DOI:
https://doi.org/10.48165/ijar.2024.45.02.5Keywords:
Semen, seminal fluid, Biochemical constituents, ROS, Antioxidants, DNA fragmentationAbstract
In the present study, frozen semen straw were collected from the bull semen bank and performed routine semen analysis. We also studied different biochemical parameters of seminal fluid, including ROS generation and DNA fragmentation. Average viability and motility of sperm showed within 77% and 27%, respectively, which is not satisfactory. Biochemical constituents like glucose, fructose, total protein, cholesterol, and others varied among the different breeds, and there was no superiority among the breeds. The results of different electrolyte concentrations were closely associated among the different breeds that protected the sperm from osmotic lysis. Aspartate transaminase, alanine transaminase, alkaline phosphatase, and acid phosphatase activity were mostly better in exotic and crossbred breeds than in pure indigenous breeds. Antioxidant profile and oxidative stress (OS) were also studied. The results indicated that antioxidant enzyme (catalase, GPx) activity and reduced glutathione content were high in the crossbred variety. However, lipid peroxidation rate was high in the Gir breed. Flowcytometry study revealed that the ROS generation level was very high, and the rate of DNA fragmentation was around 50%, which indicated the loss of 50% of sperm due to ROS. In conclusion, it could be said that cryopreservation decreases sperm viability, motility, and increases ROS that is detrimental to sperm survival.
References
Agarwal, A., Nallella, K.P., Allamaneni, S.S., and Said, T.M. (2004). Role of antioxidants in treatment of male infertility: An overview of the literature. Reprod. Biomed. Online, 8(6): 616–627.
Aitken, R.J., and Baker, M.A. (2004). Oxygene stress and male reproductive biology. Reprod. Fertil. Dev., 16(5): 581–588.
Amare, T.S., and Reda, A.A. (2012). Quality evaluation of cryo preserved semen used in artificial insemination of cattle in selected districts of western gojjam zone of Amhara region. Ethiop. J. Reprod. Infertil., 3(1): 1–7.
Andrabi, S.M.H. (2007). Fundamental principles of cryopreser vation of Bos taurus and Bos indicus bull spermatozoa. Mini review. Int. J. Agric. Biol., 9: 367–369.
Assumpção, T.I., Torres Júnior, R.A.A., Sousa, M.V., and Ricart, C.A.O. (2005). Correlation between fertility and levels of protein, sugar and free amino acids in seminal plasma of Nelore bulls. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 57(1): 55–61.
Batool, A., Mehboob, K., Qadeer, S., Ansari, M.S., Rakha, B.A., Ullah, N., Andrabi, S.M.H., and Akhter, S. (2012). Effect of α-tocopherol acetate and ascorbic acid in extender on qual ity of zebu bull spermatozoa. Pak. J. Zool., 44: 1487–1491.
Bergeron, A., Crête, M.H., Brindle, Y., and Manjunath, P. (2004). Low-density lipoprotein fraction from hen’s egg yolk decreases the binding of the major proteins of Bovine sem inal plasma to sperm and prevents lipid Efflux from the sperm membrane. Biol. Reprod., 70(3): 708–717.
Bhakat, M., Mohanty, T.K., Gupta, A.K., and Abdullah, M. (2014). Effect of season on semen quality of crossbred (Karan Fries) bulls. Adv. Anim. Vet. Sci., 2(11): 632–637.
Bilodeau, J.F., Chatterjee, S., Sirard, M.A., and Gagnon, C. (2000). Levels of antioxidant defenses are decreased in bovine sper matozoa after a cycle of freezing and thawing. Mol. Reprod. Dev., 55(3): 282–288.
Bourdon, E., and Blache, D. (2001). The importance of pro teins in defense against oxidation. Antioxidants and Redox Signaling, 3(2): 293–311.
Celeghini, E.C.C., de Arruda, R.P., de Andrade, A.F., Nascimento, J., Raphael, C.F., and Rodrigues, P.H. (2008). Effects that bovine sperm cryopreservation using two dif ferent extenders has on sperm membranes and chromatin. Anim. Reprod. Sci., 104(2–4): 119–131.
Çevik, M., Tuncer, P.B., Taşdemir, U., and Özgürtaş, T. (2007). Comparison of spermatological characteristics and bio chemical seminal plasma parameters of normozoospermic and oligoasthenozoospermic bulls of two breeds. Turk. J. Vet. Anim. Sci., 31(6): 381–387.
Chandra, A.K., SenGupta, P., Goswami, H., and Sarkar, M. (2013). Effects of dietary magnesium on testicular histology, ste roidogenesis, spermatogenesis and oxidative stress markers in adult rats. Indian J. Exp. Biol., 51(1): 37–47.
Chaverio, A., Machado, L., Frijters, A., Engel,B., and Woelders, H. (2006). Improvement of parameters of freezing protocol for bull sperm using two osmotic supports. Theriogenology; 65: 1875-1890.
Cotter, P.Z., Goolsby, H.A., and Prien, S.D. (2005). Preliminary eval uation of a unique freezing technology for bovine spermato zoa cryopreservation. Reprod. Domest. Anim., 40(2): 98–99.
D’Andre, H.C., Rugira, K.D., Elyse, A., Claire, I., Vincent, N., Celestin, M., Maximillian, M., Tiba, M., Pascal, N., Marie, N.A., Christine, K., and Daphrose, G. (2017). Influence of breed, season and age on quality bovine semen used for artificial insemination. Int. J. Livest. Prod., 8(6): 72-78.
Del, Mestro, R.F., and McDonald, W. (1986). Oxidative enzymes intissue homogenates. In R. A. Greenwald (Ed.), CRC Handbook of methods for oxygen radical research (pp. 291– 296): CRC Press.
Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics, 6: 241–252.
Eskiocak, S., Gozen, A.S., Yapar, S.B., Tavas, F., Kilic, A.S., and Eskiocak, M. (2005). Glutathione and free sulphydryl con tent of seminal plasma in healthy medical students during and after exam stress. Human Reprod., 20(9): 2595–2600
Farooq, U., Ijaz, A., Ahmad, N., Rehman, H., and Zaneb, H. (2013). Seasonal variations in certain physical and biochemical attributes of semen from Cholistani bulls. Pak. Vet. J., 33(4): 510–514.
Farooq, U., Mahmood, S.A., Ahmad, I., Ahmad, N., Idris, M., and Abbas, M.T. (2015). Evaluation of postthaw sperm parameters and fertility of Cholistani service bulls. Turk J. Vet. Anim. Sci., 39: 472–479.
Fernández-Gago, R., Domínguez, J.C., and Martínez-Pastor, F.M. (2013). Seminal plasma applied post-thawing affects boar sperm physiology: A flow cytometry study. Theriogenology, 80(4): 400–410.
Gonçalves, F.S., Barretto, L.S.S., Arruda, R.P., Perri, S.H.V., and Mingoti, G.Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod. Domest. Anim., 45(1): 129–135.
Goshme, S., Asfaw, T., Demiss, C., and Besufekad, S. (2021). Evaluation of motility and morphology of frozen bull semen under different thawing methods used for arti ficial insemination in North Shewa zone, Ethiopia. Heliyon, 7(10): e08183.
Gündoğan, M. (2006). Some reproductive parameters and. Seminal plasma Constituents in Relation to Season in Akkaraman and Awassi Rams. Turk. J. Vet. Anim. Sci., 30: 95–100.
Gür, S., and Demirci, E. (2000). Effect of calcium, magnesium, sodium and potassium levels in seminal plasma of holstein bulls on spermatological character. Turk. J. Vet. Animal Sci., 24(3): 275–281.
Gürler, H., Calisici, O., and Bollwein, H. (2015). Inter- and intra-individual variability of total antioxidant capacity of
bovine seminal plasma and relationships with sperm qual ity before and after cryopreservation. Anim. Reprod. Sci., 155: 99–105.
Jacyno, E., Kołodziej, A., Kawęcka, M., Pietruszka, A., Matysiak, B., and Kamyczek, M. (2009). The relationship between blood serum and seminal plasma cholesterol content in young boars and their semen qualitative traits and testes size. Arch. Anim. Breed., 52(2): 161–168.
Jobim, M.I.M., Oberst, E.R., Salbego, C.G., Souza, D.O., Wald, V.B., Tramontina, F., and Mattos, R.C. (2004). Two dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology, 61(2–3): 255–266.
Joseph, T., Zalenskaya, I.A., Sawyer, L.C., Chandra, N., and Doncel, G.F. (2013). Seminal plasma induces prosta glandin-endoperoxide synthase (PTGS) 2 expression in immortalized human vaginal cells: Involvement of semen prostaglandin E2 in PTGS2 upregulation. Biol. Reprod., 88(1): 13.
Juyena, N.S., and Stelletta, C. (2012). Seminal plasma: An essen tial attribute to spermatozoa. J. Androl., 33(4): 536–551. Khan, A., Yasinzai, M.M., and Kakar, M.A. (2015). Biochemical analysis of bovine (Bos indicus) seminal plasma. Int. J. Adv. Biol. Biomed. Res., 3(4): 361–369.
Kumar, D., Kumar, P., Singh, P., Yadav, S.P., and Yadav, P.S. (2016). Assessment of sperm damages during different stages of cryopreservation in water buffalo by fluorescent probes. Cytotechnology, 68(3): 451–458.
Lessard, C., Parent, S., Leclerc, P., Bailey, J.L., and Sullivan, R. (2000). Cryopreservation alters the levels of the bull sperm surface protein P25b. J. Androl., 21(5): 700–707.
Lone, S.A., Prasad, J.K., Ghosh, S.K., Das, G.K., Balamurugan, B., Sheikh, A.A., Katiyar, R., and Verma, M.R. (2016). Activity of enzymatic antioxidants and total antioxidant capacity in seminal plasma of Murrah bulls during cryopreservation. J. Anim. Res., 6(3): 405–410.
Luck, H. (1963). Catalase. In H. W. Bergmeyer (Ed.), Methods of Enzymatic Analysis, section 3: (pp. 885–894). Academic Press. Máchal, L., Chládek, G., and Straková, E. (2002). Copper, phos phorus and calcium in bovine blood and seminal plasma in relation to semen quality. J. Anim. Feed Sci., 11(3): 425–435. Marzec-Wŕoblewska, U., Kamiński, P., and ŁaKota, P. (2012). Influence of chemical elements on mammalian spermato zoa. Folia Biologica, 58(1): 7–15.
Massanyi, P., Trandzik, J., Nad, P., Toman, R., Skalicka, M., and Korenekova, B. (2003). Seminal concentrations of trace elements in various animals and their correlations. Asia. J. Androl., 5: 101-104.
Massanyi, P., Weis, J., Lukac, N., Trandzik, J., and Bystricka, J. (2008). Cadmium, zinc, copper, sodiumand potassium concentrations in rooster and turkey semen and their cor relation. J. Environ. Sci. Health – Part A, 43(5): 563–565.
Medeiros, C.M.O., Forell, F., Oliveira, A.T., and Rodrigues, J.L. (2002). Current status of sperm cryopreservation: Why isn’t it better? Theriogenology, 57(1): 327–344.
Moron, M.S., Depierre, J.W., and Mannervik, B. (1979). Levels of glutathione reductase and glutathione S-transferaseactivities in rat lung and liver. Biochimica et Bi ophysica Acta, 582(1): 67–78.
Mosaferi, S., Niasari-Naslaji, A., Abarghani, A., Gharahdaghi, A.A., and Gerami, A. (2005). Biophysical and biochemical characteristics of Bactrian camel semen collected by artifi cial vagina. Theriogenology, 63(1): 92–101.
Mukhopadhyay, C.S., Gupta, A.K., Yadav, B.R., Chauhan, I.S., Gupta, A., Mohanty, T.K., and Raina, V.S. (2011). Effect of cryopreservation on sperm chromatin integrity and fertilizing potential in bovine semen. Livest. Sci., 136(2–3): 114–121.
Ohkawa, H., Ohishi, N., and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reac tion. Anal. Biochem., 95(2): 351–358.
Paglia, D.E., and Valentine, W.N. (1967). Studies on the quantita tiveand qualitative characterization of erythrocyte glutathi one peroxidase. J. Lab. Clin. Med., 70(1): 158–169.
Pommer, A.C., Linfor, J.J., and Meyers, S.A. (2002). Capacitation and acrosomal exocytosis are enhanced by incubation of stallion of spermatozoa in commercial semen extender. Theriogenology, 57(5): 1493–150.
Purohit, S.B., Laloraya, M., and Kumar, G.P. (1999) Role of ions and ion channels in capacitation and acrosome reaction of spermatozoa. Asian J. Androl., 1: 95-107.
Raheja, N., Choudhary, S., Grewal, S., Sharma, N., and Kumar, N. (2018). A review on semen extenders and addi tives used in cattle and buffalo bull semen preservation. J. Entomol. Zool. Stud., 6(3): 239–245.
Słowińska, M., Liszewska, E., Nynca, J., Bukowska, J., Hejmej, A., Bilińska, B., Szubstarski, J., Kozłowski, K., Jankowski, J., and Ciereszko, A. (2014). Isolation and characterization of an ovoinhibitor, a multidomainkazal-like inhibitor from turkey (Meleagris gallopavo) seminal plasma. Biol. Reprod., 91(5): 108, 115.
Storey, B.T. (2008). Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Develop. Biol., 52(5–6): 427–437. Suski, J.M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., and Wieckowski, M.R. (2012). Relation between mitochon
drial membrane potential and ROS formation. Methods in Mol. Biol., 810: 183–205.
Tavilani, H., Goodarzi, M.T., Vaisi-Raygani, A., Salimi, S., and Hassanzadeh, T. (2008). Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxida tion of spermatozoa. Int. Braz. J. Urol, 34(4): 485–491.
Townsend, D.M., Tew, K.D., and Tapiero, H. (2003). The importance of glutathione in human dis ease. Biomed. Pharmacother., 57(3–4): 145–155.
Tribulo, P., Bogle, O., Mapletoft, R.J., and Adams, G.P. (2015). Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects on ovarian function in cattle. Theriogenology, 83(9): 1394–1401.
Tvrdá, E., Lukáč, N., Schneidgenová, M., Lukáčová, J., Szabó, C., Goc, Z., Greń, A., and Massányi, P. (2013b). Impact of seminal chemical elements on the oxidative balance in bovine seminal plasma and spermatozoa. J. Vet. Med., 2013: article ID 125096, 8 pages.
Tvrdá, E., Kňažická, Z., and Lukáč, N. (2012). Selected heavy metals versus antioxidant parameters in bull seminal plas ma—A comparative study. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 47(9): 1261–1266.
Tvrdá, E., Kňažická, Z., Lukáčová, J. et al. (2013a). The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and sper matozoa. J. Environ. Sci.Health – Part A, 48: 1–9.
Veerabramhaiah, K., Rao, S.A., Rao, V.H., Naidu, K.V., and Rao, S.T.V. (2011). Effect of tris and biociphos-plus extend ers on the extracellular enzyme release of phosphatases and transferases in punganur bull semen. J. Adv. Vet. Res., 1: 61–64.
Vince, S., Žura Žaja, I., Samardžija, M., Majić Balić, I., Vilić, M., Đuričić, D., Valpotić, H., Marković, F., and Milinković-Tur, S. (2018). Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during cold and warm periods of the year. Animal, 12(3): 559–568.
Wong, W.Y., Flik, G., Groenen, P.M.W., Swinkels, D.W., Thomas, C.M.G., Copius-Peereboom, J.H.J., Merkus, H.M., and Steegers-Theunissen, R.P.M. (2001). The impact of calcium, magnesium zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod. Toxicol., 15(2): 131–136.
Wongtawan, T., Saravia, F., Wallgren, M., Caballero, I., and Rodríguez-Martínez, H. (2006). Fertility after deep intra-uterine artificial insemination of concentrated low-vol ume boar semen doses. Theriogenology, 65(4): 773–787.
Massanyi, P., Weis, J., Lukac, N., Trandzik, J., and Bystricka, J. (2008). Cadmium, zinc, copper, sodiumand potassium concentrations in rooster and turkey semen and their cor relation. J. Environ. Sci. Health – Part A, 43(5): 563–565.
Medeiros, C.M.O., Forell, F., Oliveira, A.T., and Rodrigues, J.L. (2002). Current status of sperm cryopreservation: Why isn’t it better? Theriogenology, 57(1): 327–344.
Moron, M.S., Depierre, J.W., and Mannervik, B. (1979). Levels of glutathione reductase and glutathione S-transferaseactivities in rat lung and liver. Biochimica et Bi ophysica Acta, 582(1): 67–78.
Mosaferi, S., Niasari-Naslaji, A., Abarghani, A., Gharahdaghi, A.A., and Gerami, A. (2005). Biophysical and biochemical characteristics of Bactrian camel semen collected by artifi cial vagina. Theriogenology, 63(1): 92–101.
Mukhopadhyay, C.S., Gupta, A.K., Yadav, B.R., Chauhan, I.S., Gupta, A., Mohanty, T.K., and Raina, V.S. (2011). Effect of cryopreservation on sperm chromatin integrity and fertilizing potential in bovine semen. Livest. Sci., 136(2–3): 114–121.
Ohkawa, H., Ohishi, N., and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reac tion. Anal. Biochem., 95(2): 351–358.
Paglia, D.E., and Valentine, W.N. (1967). Studies on the quantita tiveand qualitative characterization of erythrocyte glutathi one peroxidase. J. Lab. Clin. Med., 70(1): 158–169.
Pommer, A.C., Linfor, J.J., and Meyers, S.A. (2002). Capacitation and acrosomal exocytosis are enhanced by incubation of stallion of spermatozoa in commercial semen extender. Theriogenology, 57(5): 1493–150.
Purohit, S.B., Laloraya, M., and Kumar, G.P. (1999) Role of ions and ion channels in capacitation and acrosome reaction of spermatozoa. Asian J. Androl., 1: 95-107.
Raheja, N., Choudhary, S., Grewal, S., Sharma, N., and Kumar, N. (2018). A review on semen extenders and addi tives used in cattle and buffalo bull semen preservation. J. Entomol. Zool. Stud., 6(3): 239–245.
Słowińska, M., Liszewska, E., Nynca, J., Bukowska, J., Hejmej, A., Bilińska, B., Szubstarski, J., Kozłowski, K., Jankowski, J., and Ciereszko, A. (2014). Isolation and characterization of an ovoinhibitor, a multidomainkazal-like inhibitor from turkey (Meleagris gallopavo) seminal plasma. Biol. Reprod., 91(5): 108, 115.
Storey, B.T. (2008). Mammalian sperm metabolism: Oxygen and sugar, friend and foe. Int. J. Develop. Biol., 52(5–6): 427–437. Suski, J.M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J., and Wieckowski, M.R. (2012). Relation between mitochon
drial membrane potential and ROS formation. Methods in Mol. Biol., 810: 183–205.
Tavilani, H., Goodarzi, M.T., Vaisi-Raygani, A., Salimi, S., and Hassanzadeh, T. (2008). Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxida tion of spermatozoa. Int. Braz. J. Urol, 34(4): 485–491.
Townsend, D.M., Tew, K.D., and Tapiero, H. (2003). The importance of glutathione in human dis ease. Biomed. Pharmacother., 57(3–4): 145–155.
Tribulo, P., Bogle, O., Mapletoft, R.J., and Adams, G.P. (2015). Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects on ovarian function in cattle. Theriogenology, 83(9): 1394–1401.
Tvrdá, E., Lukáč, N., Schneidgenová, M., Lukáčová, J., Szabó, C., Goc, Z., Greń, A., and Massányi, P. (2013b). Impact of seminal chemical elements on the oxidative balance in bovine seminal plasma and spermatozoa. J. Vet. Med., 2013: article ID 125096, 8 pages.
Tvrdá, E., Kňažická, Z., and Lukáč, N. (2012). Selected heavy metals versus antioxidant parameters in bull seminal plas ma—A comparative study. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 47(9): 1261–1266.
Tvrdá, E., Kňažická, Z., Lukáčová, J. et al. (2013a). The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and sper matozoa. J. Environ. Sci.Health – Part A, 48: 1–9.
Veerabramhaiah, K., Rao, S.A., Rao, V.H., Naidu, K.V., and Rao, S.T.V. (2011). Effect of tris and biociphos-plus extend ers on the extracellular enzyme release of phosphatases and transferases in punganur bull semen. J. Adv. Vet. Res., 1: 61–64.
Vince, S., Žura Žaja, I., Samardžija, M., Majić Balić, I., Vilić, M., Đuričić, D., Valpotić, H., Marković, F., and Milinković-Tur, S. (2018). Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during cold and warm periods of the year. Animal, 12(3): 559–568.
Wong, W.Y., Flik, G., Groenen, P.M.W., Swinkels, D.W., Thomas, C.M.G., Copius-Peereboom, J.H.J., Merkus, H.M., and Steegers-Theunissen, R.P.M. (2001). The impact of calcium, magnesium zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod. Toxicol., 15(2): 131–136.
Wongtawan, T., Saravia, F., Wallgren, M., Caballero, I., and Rodríguez-Martínez, H. (2006). Fertility after deep intra-uterine artificial insemination of concentrated low-vol ume boar semen doses. Theriogenology, 65(4): 773–787.