Evaluation of Feeding Effects of A1 and A2 Cow Milk-Based Diet on Hematological Parameters in Obese Mice Model

Authors

  • Preeti  ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana Deenbandhu Chotu Ram University of Science and Technology, Murthal, Sonipat, Haryana 
  • Manishi Mukesh ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana
  • Pamela Singh Deenbandhu Chotu Ram University of Science and Technology, Murthal, Sonipat, Haryana
  • Amarjeet ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana
  • Shivam Kumar Dubey ICAR-National Dairy Research Institute Karnal, Haryana, India
  • Vipul Chaudhary Deenbandhu Chotu Ram University of Science and Technology, Murthal, Sonipat, Haryana
  • R S kataria ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana
  • Saket Kumar Niranjan ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana
  • Ashok Kumar Mohanty ICAR-National Dairy Research Institute Karnal, Haryana, India
  • Monika Sodhi ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana

DOI:

https://doi.org/10.48165/ijar.2024.45.01.31

Keywords:

High-Fat Diet, Hematology, A1/A2 milk, Genotypes, Mice, Glucose

Abstract

Beta-casein is one of the four caseins that make up approximately 80% of cow’s milk proteins. Of the 15 known genetic  variants of β-casein, A1 and A2 are the most prevalent. These two variants differ by a single amino acid at position 67,  where the A2 variant contains proline, while in the A1 variant, proline is replaced by histidine. Based on A1 and A2  β-casein variants cow milk is categorized as A1 and A2 milk receptively. Structural variations due to change of amino  acid result in generation of different bioactive peptides during gastrointestinal protease digestion and beta casomorphin 7  (BCM-7) released from digestion of A1 milk has been implicated as risk factor for human health. In the present study, we  analyzed the effect of A1/A2 milk powder-based diet on hematological parameters in obese model of C57BL/6J mice (fed  with high-fat diet). Mice in different diet groups were fed with milk powder-based diet prepared from milk with three  different genotypes (A1A1, A1A2 and A2A2) with reference to A1/A2 allele of beta casein for 90 days. The observations  revealed significant changes in blood glucose, Hb, HCT, WBC and RBC count in mice from control vis a vis high fat  diet group. HFD+A1A1/A1A2 group also showed significant alterations in blood glucose changes compared to control.  Across the milk powder-based diet groups, blood glucose level and WBC count in HFD+A1A1 group was significantly  higher than HFD+A2A2 group pointing towards the potential pro-inflammatory response. No changes were observed  in Hb, hematocrit, MCV or RBC count across milk powder-based diet groups. However, this is a preliminary study that  would need further exploration. 

References

Ausk, K. J., & Ioannou, G. N. (2008). Is obesity associated with anemia of chronic disease? A population-based study. Obesity, 16(10), 2356-2361.

Barnett, M. P., McNabb, W. C., Roy, N. C., Woodford, K. B., & Clarke, A. J. (2014). Dietary A1 β-casein affects inflammation, symptoms of post-gastroenteritis syndrome and related behavioral responses in mice. International Journal of Food Sciences and Nutrition, 65(6), 720-727.

Basheer, S., Malik, I. R., Awan, F. R., Sughra, K., Roshan, S., Khalil, A., ... & Parveen, Z. (2023). Histological and Microscopic Analysis of Fats in Heart, Liver Tissue, and Blood Parameters in Experimental Mice. Genes, 14(2), 515.

Bell, S. J., Grochoski, G. T., & Clarke, A. J. (2006). Health implications of milk containing β-casein with the A2 genetic variant. Critical Reviews in Food Science and Nutrition, 46(1), 93-100.

Buettner, R., Scholmerich, J., & Bollheimer, L. C. (2007). High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring), 15, 798-808.

Chaudhary, V., Mukesh, M., Bhakri, G., Singh, P., Kataria, R. S., Niranjan, S. K., ... & Sodhi, M. (2023). Effects of feeding A1 and A2 cow milk-based diet on hematological parameters in diabetic mice model. Indian Journal of Animal Research, 57(7), 895-900.

Chia, J. S., McRae, J. L., Enjapoori, A. K., Lefèvre, C. M., Kukuljan, S., & Dwyer, K. M. (2018). Dietary cows’ milk protein A1 beta-casein increases the incidence of T1D in NOD mice. Nutrients, 10(9), 1291.

Donath, M. Y., & Shoelson, S. E. (2011). Type 2 diabetes as an inflammatory disease. Nature Reviews Immunology, 11(2), 98-107.

Edozien, J. C., & Switzer, B. R. (1977). Effects of dietary protein, fat, and energy on blood hemoglobin and hematocrit in the rat. The Journal of Nutrition, 107(6), 1016-1021.

Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Jr., Harwalkar, V. R., Jenness, R., & Whitney, R. M. (1984). Nomenclature of proteins of cow’s milk: Fifth revision. Journal of Dairy Science, 67, 1559-1631.

Farhangi, M. A., Keshavarz, S. A., Eshraghian, M., Ostadrahimi, A., & Saboor-Yaraghi, A. A. (2013). White blood cell counts in women: Relation to inflammatory biomarkers, hematological profiles, visceral adiposity, and other cardiovascular risk factors. Journal of Health, Population, and Nutrition, 31(1), 58.

Fruh, S. M. (2017). Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. Journal of the American Association of Nurse Practitioners, 29(S1), S3-S14. https://doi.org/10.1002/2327-6924.12510

Gotardo, É. M. F., dos Santos, A. N., Miyashiro, R. A., Gambero, S., Rocha, T., Ribeiro, M. L., & Gambero, A. (2013). Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. Journal of Nutritional Science and Vitaminology, 59(5), 454-461.

Groves, M. L. (1969). Some minor components of casein and other phosphoproteins in milk: A review. Journal of Dairy Science, 52(8), 1155-1165.

Haq, M. R. U., Kapila, R., Saliganti, V., & Kapila, S. (2014). Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. Journal of Functional Foods, 8, 150-160. https://doi.org/10.1016/j.jff.2014.03.018

Ho, S., Woodford, K., Kukuljan, S., & Pal, S. (2014). Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomized cross-over pilot study. European Journal of Clinical Nutrition, 68(9), 994-1000.

Jelen, P. (2009). Dried whey, whey proteins, lactose and lactose derivative products. In Dairy powders and concentrated products (pp. 255-267).

Jeong, H. R., Shim, Y. S., Lee, H. S., & Hwang, J. S. (2021). Hemoglobin and hematocrit levels are positively associated with blood pressure in children and adolescents 10 to 18 years old. Scientific Reports, 11(1), 19052.

Jianqin, S., Leiming, X., Lu, X., Yelland, G. W., Ni, J., & Clarke, A. J. (2016). Effects of A1 and A2 beta-casein on gastrointestinal physiology, symptoms of discomfort, and inflammation in Chinese adults: A blinded randomized crossover study. Nutrition Journal, 15(1), 1-9.

Kaminski, S., Cieslińska, A., & Kostyra, E. (2007). Polymorphism of bovine beta-casein and its potential effect on human health. Journal of Applied Genetics, 48(3), 189-198.

Keri Marshall, N. (2004). Therapeutic applications of whey protein. Alternative Medicine Review, 9(2), 136-156.

Laakkonen, A., & Pukkala, E. (2008). Cancer incidence among Finnish farmers, 1995-2005. Scandinavian Journal of Work, Environment & Health, 34(1), 73-79.

Laugesen, M., & Elliott, R. B. (2003). Ischemic heart disease, Type 1 diabetes, and cow milk A1 β-casein. New Zealand Medical Journal, 116(1168), U295.

Maner, B. S., Killeen, R. B., & Moosavi, L. (2024). Mean corpuscular volume. In StatPearls [Internet]. StatPearls Publishing.

Maysami, S., Haley, M. J., Gorenkova, N., Krishnan, S., McColl, B. W., & Lawrence, C. B. (2015). Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. Journal of Neuroinflammation, 12, 1-12.

Monetini, L., Barone, F., Stefanini, L., Petrone, A., Walk, T., Jung, G., Thorpe, R., Pozzilli, P., & Cavallo, M. G. (2003). Establishment of T cell lines to bovine beta-casein and beta-casein-derived epitopes in patients with type 1 diabetes. Journal of Endocrinology, 176, 143-150.

Muoio, D. M., & Newgard, C. B. (2006). Obesity-related derangements in metabolic regulation. Annual Review of Biochemistry, 75, 367-401.

Roginski, H. (2003). Encyclopedia of dairy sciences. Academic Press.

Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., & Fregly, M. (2003). Relation of beta casomorphin to apnea in sudden infant death syndrome. Peptides, 24(6), 937-943.

Tailford, K. A., Berry, C. L., Thomas, A. C., & Campbell, J. H. (2003). A casein variant in cow’s milk is atherogenic. Atherosclerosis, 170(1), 13-19.

Tchernof, A., & Després, J. P. (2013). Pathophysiology of human visceral obesity: An update. Physiological Reviews, 93(1), 359-404.

Thierer, J. H., Foresti, O., Yadav, P. K., Wilson, M. H., Moll, T. O., Shen, M. C., ... & Farber, S. A. (2024). Pla2g12b drives expansion of triglyceride-rich lipoproteins

Downloads

Published

2024-04-30

How to Cite

, P., Mukesh, M., Singh, P., Amarjeet, Dubey, S.K., Chaudhary, V., … Sodhi , M. (2024). Evaluation of Feeding Effects of A1 and A2 Cow Milk-Based Diet on Hematological Parameters in Obese Mice Model . The Indian Journal of Animal Reproduction, 45(1), 115–122. https://doi.org/10.48165/ijar.2024.45.01.31