Artificial Intelligence on Farms: Sheep Breed Classification Using Computer Vision
DOI:
https://doi.org/10.48165/ijapm.2024.40.4.8Keywords:
CNN, KNN, SVM, image classification, sheep imagesAbstract
As the challenges of population explosion, food security and climate change become more pressing, there is a dire need to produce more food. Since animal husbandry is a crucial part of agriculture, production per farm has to also increase substantially over the next few years. This is especially important for developing countries where the introduction of technology and automation can remove drudgery, improve efficiency and reduce labour. An important part of this is the use of images for automatic animal monitoring. This research was therefore undertaken to classify four breeds using three artificial intelligence algorithms; K-nearest neighbours, Support Vector Machines and Convolutional Neural Networks (CNNs) which were evaluated and ranked. We thus developed three deployable models for image classification among which pre trained CNNs had the highest accuracy of 0.90. We conclude that image classification therefore is useful for automatic animal classification and monitoring. This would help improve the production potential of farms through the automation of farm tasks.
References
Abu Jwade, S. (2019). Data for: On Farm Sheep Breed Classification Using Deep Learning [Dataset]. Mendeley. https://doi.org/10.17632/64GKBZ8BDB.2
Aytekin, Ibrahim, Eyduran, E., Karadas, K., Akşahan, R., & Keskin, Ismail. (2018). Prediction of Fattening Final Live Weight from some Body Measurements and Fattening Period in Young Bulls of Crossbred and Exotic Breeds using MARS Data Mining Algorithm. Pakistan Journal of Zoology, 50(1). https://doi.org/10.17582/journal.pjz/2018.50.1.1
89.195
Baba, M. A., Ahanger, S., Hamadani, A., Rather, M., & Shah, M. M. (2020). Factors affecting wool characteristics of sheep reared in Kashmir. Tropical Animal Health and Production, 52, 2129–2133.
Bimantoro, M. Z., & Emanuel, A. W. R. (2021). Sheep Face Classification using Convolutional Neural Network. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), 111–115. https://doi.org/10.1109/EIConCIT50028.2021.9
431933
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
Chan, S., & Treleaven, P. (2015). Continuous Model Selection for Large-Scale Recommender Systems. In Handbook of Statistics (Vol. 33, pp. 107–124). Elsevier. https://doi.org/10.1016/B978-0-444-63492-
4.00005-8
Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks, 10(5), 1055–1064. https://doi.org/10.1109/72.788646
Chollet, F. & others. (2015). Keras. GitHub. https://github.com/fchollet/keras
Divya Meena, S., & Agilandeeswari, L. (2019). An Efficient Framework for Animal Breeds Classification Using Semi-Supervised Learning and Multi-Part Convolutional Neural Network (MP-CNN). IEEE Access, 7, 151783–151802. https://doi.org/10.1109/ACCESS.2019.2947717
Druzhkov, P., & Kustikova, V. (2016). A survey of deep learning methods and software tools for image classification and object detection. Pattern Recognition and Image Analysis, 26, 9– 15.
Ghosh, P., & Mandal, S. N. (2022). PigB: Intelligent pig breeds classification using supervised machine learning algorithms. International Journal of Artificial Intelligence and Soft Computing, 7(3), 242. https://doi.org/10.1504/IJAISC.2022.126345
Greesham, K., & Gripsy, J. (2020). Image Classification using HOG and LBP Feature Descriptors with SVM and CNN. 8(4). https://doi.org/10.17577/IJERTCONV8IS04021
Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN Model-Based Approach in Classification. In R. Meersman, Z. Tari, & D. C.
Schmidt (Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE (Vol. 2888, pp. 986–996). Springer Berlin Heidelberg. https://doi.org/10.1007/978-
3-540-39964-3_62
Hamadani, A., & Ganai, N. A. (2022). Development of a multi-use decision support system for scientific management and breeding of sheep. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-24091-y
Hamadani, A., Ganai, N. A., Alam, S., Mudasir, S., Raja, T. A., Hussain, I., & Ahmad, H. A. (2022a). Artificial Intelligence Techniques for the Prediction of Body Weights in Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/ijar.b-4831
Hamadani, A., Ganai, N. A., Alam, S., Mudasir, S., Raja, T. A., Hussain, I., & Ahmad, H. A. (2022b). Artificial Intelligence Techniques for the Prediction of Body Weights in Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/ijar.b-4831
Hamadani, A., Ganai, N. A., Khan, N. N., Shanaz, S., & Ahmad, T. (2019a). Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Ruminant Research, 177, 133–140.
Hamadani, A., Ganai, N. A., Khan, N. N., Shanaz, S., & Ahmad, T. (2019b). Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Ruminant Research, 177, 133–140.
Hamadani, A., Ganai, N. A., Raja, T., Alam, S., Andrabi, S. M., Hussain, I., & Ahmad, H. A. (2022). Outlier Removal in Sheep Farm Datasets Using Winsorization. Bhartiya Krishi Anusandhan Patrika, Of. https://doi.org/10.18805/bkap397
Hamadani, A., Ganai, N. A., & Rather, M. A. (2021). Genetic, phenotypic and heritability trends for body weights in Kashmir Merino Sheep. Small Ruminant Research, 205, 106542. https://doi.org/10.1016/j.smallrumres.2021.106
542
Hamadani, A., Ganai, N. A., Rather, M., Raja, T., Shabir, N., Ahmad, T., Shanaz, S., Aalam, S., & Shabir, M. (2020). Estimation of genetic and phenotypic trends for wool traits in Kashmir Merino sheep. Indian J. Anim. Sci, 90(6), 893– 897.
Hamadani, H., & Khan, A. A. (2015). Automation in livestock farming – A technological revolution.
Int. J. of Adv. Res., 3, 1335–1344.
Hamadani, H., Khan, A. A., Sheikh, I. U., Fazili, M. R., Khan, H. M., Haq, Z., Saipriya, G., & Wani, S. A. (2021). Morphological and Morphometrical Studies on the Crossbred Cows under Temperate Climatic Condition of Kashmir Valley. Asian Journal of Dairy and Food Research, Of. https://doi.org/10.18805/ajdfr.DR
1688
jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of Heart Disease Using K Nearest Neighbor and Genetic Algorithm. Procedia Technology, 10, 85–94. https://doi.org/10.1016/j.protcy.2013.12.340
Khan, N. N., Ganai, N. A., Alam, S., Shanaz, S., Hamadani, A., Rather, M. A., Bukhari, S., Shah, R. M., Jalal, H., & Wani, N. (2020). Genetic evaluation of growth performance in Corriedale sheep in J and K, India. Small Ruminant Research, 192, 106197. https://doi.org/10.1016/j.smallrumres.2020.106
197
Khan, N. N., Rather, M. A., Hamadani, A., & Chakraborty, D. (2022a). Genetic evaluation of growth performance of Rambouillet sheep in Jammu and Kashmir, India. The Indian Journal of Animal Sciences, 92(3), 327–335. https://doi.org/10.56093/ijans.v92i3.122265
Khan, N. N., Rather, M. A., Hamadani, A., & Chakraborty, D. (2022b). Genetic evaluation of growth performance of Rambouillet sheep in Jammu and Kashmir, India. The Indian Journal of Animal Sciences, 92(3), 327–335. https://doi.org/10.56093/ijans.v92i3.122265
Ma, S., Zhang, Q., Li, T., & Song, H. (2022). Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network. Computers and Electronics in Agriculture, 194, 106772.
https://doi.org/10.1016/j.compag.2022.106772
Manohar, N., Kumar, Y. H. S., Rani, R., & Kumar, G. H. (2019). Convolutional Neural Network with SVM for Classification of Animal Images. In V. Sridhar, M. C. Padma, & K. A. R. Rao (Eds.), Emerging Research in Electronics, Computer Science and Technology (Vol. 545, pp. 527– 537). Springer Singapore. https://doi.org/10.1007/978-981-13-5802-9_48
Nabi, N., Ganai, N. A., Shanaz, S., Aalam, S., Shabir, M., Majid, R., Bukhari, S., Mir, S. A., Hamadani, A., & Rather, M. A. (2021). Effect of Inbreeding Coefficient on Growth and Fitness
Traits in a Closed Flock of Corriedale Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/IJAR.B-4254
Pal, M., & Foody, G. M. (2012). Evaluation of SVM, RVM and SMLR for Accurate Image Classification With Limited Ground Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5), 1344– 1355.
https://doi.org/10.1109/JSTARS.2012.2215310
Pang, Y., Yu, W., Zhang, Y., Xuan, C., & Wu, P. (2023). Sheep face recognition and classification based on an improved MobilenetV2 neural network. International Journal of Advanced Robotic Systems, 20(1), 172988062311529.
https://doi.org/10.1177/17298806231152969
Rather, M. A., Kuthu, B., Hamadani, A., Ahanger, S., Baba, M. A., Baba, J. A., & Shah, M. M. (2020a). Effect of non-genetic factors on survivability and cumulative mortality of Kashmir merino lambs. Indian Journal of Small Ruminants (The), 26(1), 22. https://doi.org/10.5958/0973-
9718.2020.00011.2
Rather, M. A., Kuthu, B., Hamadani, A., Ahanger, S., Baba, M. A., Baba, J. A., & Shah, M. M. (2020b). Effect of non-genetic factors on survivability and cumulative mortality of Kashmir merino lambs. Indian Journal of Small Ruminants (The), 26(1), 22. https://doi.org/10.5958/0973-
9718.2020.00011.2
Rather, M. A., Shanaz, S., Ganai, N., Bukhari, S., Hamadani, A., Khan, N. N., Yousuf, S., Baba, A., Raja, T., & Khan, H. (2019). Genetic evaluation of wool traits of Kashmir Merino sheep in organized farms. Small Ruminant Research, 177, 14–17.
Shah, R., Ganai, N. A., Shanaz, S., Sheikh, F. D., Khan, H. M., Khan, N. N., Hamadani, A., & Alam, S. (2021). Genetic polymorphism of four candidate genes in dairy cattle of Kashmir, India. The Indian Journal of Animal Sciences, 91(10). https://doi.org/10.56093/ijans.v91i10.117218
Shah, R. M., Ganai, N. A., Khan, H. M., Sheikh, F. D., Shanaz, S., Khan, N. N., Rather, M. A., Hammadani, A., Iqbal, Z., Dar, R. A., & Ahmad, S. (2022). PIT 1 gene polymorphism and seasonality affect milk production traits in dairy cattle of Kashmir. The Indian Journal of Animal
Sciences, 92(9). https://doi.org/10.56093/ijans.v92i9.114815
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Spoliansky, R., Edan, Y., Parmet, Y., & Halachmi, I. (2016). Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. Journal of Dairy Science, 99(9), 7714–7725. https://doi.org/10.3168/jds.2015-
10607
Taheri, S., & Toygar, Ö. (2018). Animal classification using facial images with score‐ level fusion. IET Computer Vision, 12(5), 679– 685. https://doi.org/10.1049/iet-cvi.2017.0079
Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam.
Varshney, A., Katiyar, A., Singh, A. K., & Chauhan, S. S. (2021). Dog Breed Classification Using Deep Learning. 2021 International Conference on Intelligent Technologies (CONIT), 1–5. https://doi.org/10.1109/CONIT51480.2021.9498 338
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537- 016-0043-6
Zheng, N., Loizou, G., Jiang, X., Lan, X., & Li, X. (2007). Computer vision and pattern recognition. Taylor & Francis.
Zhou, W., Ma, X., & Zhang, Y. (2020). Research on Image Preprocessing Algorithm and Deep Learning of Iris Recognition. Journal of Physics: Conference Series, 1621(1), 012008. https://doi.org/10.1088/1742-
6596/1621/1/012008
Zhuang, J., Cai, J., Wang, R., Zhang, J., & Zheng, W.-S. (2020). Deep kNN for Medical Image Classification. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, & L. Joskowicz (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (Vol. 12261, pp. 127–136). Springer International Publishing. https://doi.org/10.1007/978-3-030- 59710-8_13.