Artificial Intelligence on Farms: Sheep Breed Classification Using Computer Vision

Authors

  • Ambreen Hamadani Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir

DOI:

https://doi.org/10.48165/ijapm.2024.40.4.8

Keywords:

CNN, KNN, SVM, image classification, sheep images

Abstract

As the challenges of population explosion,  food security and climate change become more  pressing, there is a dire need to produce more food.  Since animal husbandry is a crucial part of  agriculture, production per farm has to also  increase substantially over the next few years. This  is especially important for developing countries  where the introduction of technology and  automation can remove drudgery, improve  efficiency and reduce labour. An important part of  this is the use of images for automatic animal  monitoring. This research was therefore undertaken  to classify four breeds using three artificial  intelligence algorithms; K-nearest neighbours,  Support Vector Machines and Convolutional Neural  Networks (CNNs) which were evaluated and  ranked. We thus developed three deployable  models for image classification among which pre trained CNNs had the highest accuracy of 0.90. We  conclude that image classification therefore is  useful for automatic animal classification and  monitoring. This would help improve the production  potential of farms through the automation of farm  tasks.  

References

Abu Jwade, S. (2019). Data for: On Farm Sheep Breed Classification Using Deep Learning [Dataset]. Mendeley. https://doi.org/10.17632/64GKBZ8BDB.2

Aytekin, Ibrahim, Eyduran, E., Karadas, K., Akşahan, R., & Keskin, Ismail. (2018). Prediction of Fattening Final Live Weight from some Body Measurements and Fattening Period in Young Bulls of Crossbred and Exotic Breeds using MARS Data Mining Algorithm. Pakistan Journal of Zoology, 50(1). https://doi.org/10.17582/journal.pjz/2018.50.1.1

89.195

Baba, M. A., Ahanger, S., Hamadani, A., Rather, M., & Shah, M. M. (2020). Factors affecting wool characteristics of sheep reared in Kashmir. Tropical Animal Health and Production, 52, 2129–2133.

Bimantoro, M. Z., & Emanuel, A. W. R. (2021). Sheep Face Classification using Convolutional Neural Network. 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), 111–115. https://doi.org/10.1109/EIConCIT50028.2021.9

431933

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Chan, S., & Treleaven, P. (2015). Continuous Model Selection for Large-Scale Recommender Systems. In Handbook of Statistics (Vol. 33, pp. 107–124). Elsevier. https://doi.org/10.1016/B978-0-444-63492-

4.00005-8

Chapelle, O., Haffner, P., & Vapnik, V. N. (1999). Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks, 10(5), 1055–1064. https://doi.org/10.1109/72.788646

Chollet, F. & others. (2015). Keras. GitHub. https://github.com/fchollet/keras

Divya Meena, S., & Agilandeeswari, L. (2019). An Efficient Framework for Animal Breeds Classification Using Semi-Supervised Learning and Multi-Part Convolutional Neural Network (MP-CNN). IEEE Access, 7, 151783–151802. https://doi.org/10.1109/ACCESS.2019.2947717

Druzhkov, P., & Kustikova, V. (2016). A survey of deep learning methods and software tools for image classification and object detection. Pattern Recognition and Image Analysis, 26, 9– 15.

Ghosh, P., & Mandal, S. N. (2022). PigB: Intelligent pig breeds classification using supervised machine learning algorithms. International Journal of Artificial Intelligence and Soft Computing, 7(3), 242. https://doi.org/10.1504/IJAISC.2022.126345

Greesham, K., & Gripsy, J. (2020). Image Classification using HOG and LBP Feature Descriptors with SVM and CNN. 8(4). https://doi.org/10.17577/IJERTCONV8IS04021

Guo, G., Wang, H., Bell, D., Bi, Y., & Greer, K. (2003). KNN Model-Based Approach in Classification. In R. Meersman, Z. Tari, & D. C.

Schmidt (Eds.), On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE (Vol. 2888, pp. 986–996). Springer Berlin Heidelberg. https://doi.org/10.1007/978-

3-540-39964-3_62

Hamadani, A., & Ganai, N. A. (2022). Development of a multi-use decision support system for scientific management and breeding of sheep. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-24091-y

Hamadani, A., Ganai, N. A., Alam, S., Mudasir, S., Raja, T. A., Hussain, I., & Ahmad, H. A. (2022a). Artificial Intelligence Techniques for the Prediction of Body Weights in Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/ijar.b-4831

Hamadani, A., Ganai, N. A., Alam, S., Mudasir, S., Raja, T. A., Hussain, I., & Ahmad, H. A. (2022b). Artificial Intelligence Techniques for the Prediction of Body Weights in Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/ijar.b-4831

Hamadani, A., Ganai, N. A., Khan, N. N., Shanaz, S., & Ahmad, T. (2019a). Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Ruminant Research, 177, 133–140.

Hamadani, A., Ganai, N. A., Khan, N. N., Shanaz, S., & Ahmad, T. (2019b). Estimation of genetic, heritability, and phenotypic trends for weight and wool traits in Rambouillet sheep. Small Ruminant Research, 177, 133–140.

Hamadani, A., Ganai, N. A., Raja, T., Alam, S., Andrabi, S. M., Hussain, I., & Ahmad, H. A. (2022). Outlier Removal in Sheep Farm Datasets Using Winsorization. Bhartiya Krishi Anusandhan Patrika, Of. https://doi.org/10.18805/bkap397

Hamadani, A., Ganai, N. A., & Rather, M. A. (2021). Genetic, phenotypic and heritability trends for body weights in Kashmir Merino Sheep. Small Ruminant Research, 205, 106542. https://doi.org/10.1016/j.smallrumres.2021.106

542

Hamadani, A., Ganai, N. A., Rather, M., Raja, T., Shabir, N., Ahmad, T., Shanaz, S., Aalam, S., & Shabir, M. (2020). Estimation of genetic and phenotypic trends for wool traits in Kashmir Merino sheep. Indian J. Anim. Sci, 90(6), 893– 897.

Hamadani, H., & Khan, A. A. (2015). Automation in livestock farming – A technological revolution.

Int. J. of Adv. Res., 3, 1335–1344.

Hamadani, H., Khan, A. A., Sheikh, I. U., Fazili, M. R., Khan, H. M., Haq, Z., Saipriya, G., & Wani, S. A. (2021). Morphological and Morphometrical Studies on the Crossbred Cows under Temperate Climatic Condition of Kashmir Valley. Asian Journal of Dairy and Food Research, Of. https://doi.org/10.18805/ajdfr.DR

1688

jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of Heart Disease Using K Nearest Neighbor and Genetic Algorithm. Procedia Technology, 10, 85–94. https://doi.org/10.1016/j.protcy.2013.12.340

Khan, N. N., Ganai, N. A., Alam, S., Shanaz, S., Hamadani, A., Rather, M. A., Bukhari, S., Shah, R. M., Jalal, H., & Wani, N. (2020). Genetic evaluation of growth performance in Corriedale sheep in J and K, India. Small Ruminant Research, 192, 106197. https://doi.org/10.1016/j.smallrumres.2020.106

197

Khan, N. N., Rather, M. A., Hamadani, A., & Chakraborty, D. (2022a). Genetic evaluation of growth performance of Rambouillet sheep in Jammu and Kashmir, India. The Indian Journal of Animal Sciences, 92(3), 327–335. https://doi.org/10.56093/ijans.v92i3.122265

Khan, N. N., Rather, M. A., Hamadani, A., & Chakraborty, D. (2022b). Genetic evaluation of growth performance of Rambouillet sheep in Jammu and Kashmir, India. The Indian Journal of Animal Sciences, 92(3), 327–335. https://doi.org/10.56093/ijans.v92i3.122265

Ma, S., Zhang, Q., Li, T., & Song, H. (2022). Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network. Computers and Electronics in Agriculture, 194, 106772.

https://doi.org/10.1016/j.compag.2022.106772

Manohar, N., Kumar, Y. H. S., Rani, R., & Kumar, G. H. (2019). Convolutional Neural Network with SVM for Classification of Animal Images. In V. Sridhar, M. C. Padma, & K. A. R. Rao (Eds.), Emerging Research in Electronics, Computer Science and Technology (Vol. 545, pp. 527– 537). Springer Singapore. https://doi.org/10.1007/978-981-13-5802-9_48

Nabi, N., Ganai, N. A., Shanaz, S., Aalam, S., Shabir, M., Majid, R., Bukhari, S., Mir, S. A., Hamadani, A., & Rather, M. A. (2021). Effect of Inbreeding Coefficient on Growth and Fitness

Traits in a Closed Flock of Corriedale Sheep. Indian Journal of Animal Research, Of. https://doi.org/10.18805/IJAR.B-4254

Pal, M., & Foody, G. M. (2012). Evaluation of SVM, RVM and SMLR for Accurate Image Classification With Limited Ground Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5), 1344– 1355.

https://doi.org/10.1109/JSTARS.2012.2215310

Pang, Y., Yu, W., Zhang, Y., Xuan, C., & Wu, P. (2023). Sheep face recognition and classification based on an improved MobilenetV2 neural network. International Journal of Advanced Robotic Systems, 20(1), 172988062311529.

https://doi.org/10.1177/17298806231152969

Rather, M. A., Kuthu, B., Hamadani, A., Ahanger, S., Baba, M. A., Baba, J. A., & Shah, M. M. (2020a). Effect of non-genetic factors on survivability and cumulative mortality of Kashmir merino lambs. Indian Journal of Small Ruminants (The), 26(1), 22. https://doi.org/10.5958/0973-

9718.2020.00011.2

Rather, M. A., Kuthu, B., Hamadani, A., Ahanger, S., Baba, M. A., Baba, J. A., & Shah, M. M. (2020b). Effect of non-genetic factors on survivability and cumulative mortality of Kashmir merino lambs. Indian Journal of Small Ruminants (The), 26(1), 22. https://doi.org/10.5958/0973-

9718.2020.00011.2

Rather, M. A., Shanaz, S., Ganai, N., Bukhari, S., Hamadani, A., Khan, N. N., Yousuf, S., Baba, A., Raja, T., & Khan, H. (2019). Genetic evaluation of wool traits of Kashmir Merino sheep in organized farms. Small Ruminant Research, 177, 14–17.

Shah, R., Ganai, N. A., Shanaz, S., Sheikh, F. D., Khan, H. M., Khan, N. N., Hamadani, A., & Alam, S. (2021). Genetic polymorphism of four candidate genes in dairy cattle of Kashmir, India. The Indian Journal of Animal Sciences, 91(10). https://doi.org/10.56093/ijans.v91i10.117218

Shah, R. M., Ganai, N. A., Khan, H. M., Sheikh, F. D., Shanaz, S., Khan, N. N., Rather, M. A., Hammadani, A., Iqbal, Z., Dar, R. A., & Ahmad, S. (2022). PIT 1 gene polymorphism and seasonality affect milk production traits in dairy cattle of Kashmir. The Indian Journal of Animal

Sciences, 92(9). https://doi.org/10.56093/ijans.v92i9.114815

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

Spoliansky, R., Edan, Y., Parmet, Y., & Halachmi, I. (2016). Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. Journal of Dairy Science, 99(9), 7714–7725. https://doi.org/10.3168/jds.2015-

10607

Taheri, S., & Toygar, Ö. (2018). Animal classification using facial images with score‐ level fusion. IET Computer Vision, 12(5), 679– 685. https://doi.org/10.1049/iet-cvi.2017.0079

Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam.

Varshney, A., Katiyar, A., Singh, A. K., & Chauhan, S. S. (2021). Dog Breed Classification Using Deep Learning. 2021 International Conference on Intelligent Technologies (CONIT), 1–5. https://doi.org/10.1109/CONIT51480.2021.9498 338

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 9. https://doi.org/10.1186/s40537- 016-0043-6

Zheng, N., Loizou, G., Jiang, X., Lan, X., & Li, X. (2007). Computer vision and pattern recognition. Taylor & Francis.

Zhou, W., Ma, X., & Zhang, Y. (2020). Research on Image Preprocessing Algorithm and Deep Learning of Iris Recognition. Journal of Physics: Conference Series, 1621(1), 012008. https://doi.org/10.1088/1742-

6596/1621/1/012008

Zhuang, J., Cai, J., Wang, R., Zhang, J., & Zheng, W.-S. (2020). Deep kNN for Medical Image Classification. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, & L. Joskowicz (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (Vol. 12261, pp. 127–136). Springer International Publishing. https://doi.org/10.1007/978-3-030- 59710-8_13.

Published

2024-10-05

How to Cite

Artificial Intelligence on Farms: Sheep Breed Classification Using Computer Vision . (2024). Indian Journal of Animal Production and Management, 40(4), 260–268. https://doi.org/10.48165/ijapm.2024.40.4.8