Some Hermite-Hadamard Type Integral Inequalities and Their Applications via the Modified Riemann-Liouville Fractional Integral Operator
DOI:
https://doi.org/10.48165/gjs.2024.1203Keywords:
Preinvex functions, Hadamard inequalityAbstract
The aim of this manuscript is to introduce a novel form of H-H inequality via ψ-RLFIO for preinvex functions. By employing this approach, we construct a new lemma. In addition, based on this newly derived fractional identity, some new estimation of fractional H-H inequality involving m-preinvex via ψ-RLFIO is investigated. Further, we add some mean-type applications.References
[1] Hanson, M. A. (1981). On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applica tions, 80(2), 545-550.
[2] Weir, T., & Mond, B. (1988). Pre-invex functions in multiple objective optimization. Journal of Mathematical Analysis and applications, 136(1), 29-38.
[3] Ben-Israel, A., & Mond, B. (1986). What is invexity?. The ANZIAM Journal, 28(1), 1-9. [4] Barani, A., Ghazanfari, A. G., & Dragomir, S. S. (2012). Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications, 2012, 1-9.
[5] Du, T. S., Liao, J. G., & Li, Y. J. (2016). Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions. Journal of Nonlinear Sciences and Applications, 9(5), 3112-3126. [6] Deng, Y., Kalsoom, H., & Wu, S. (2019). Some new quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)-preinvex functions. Symmetry, 11(10), 1283.
[7] Farajzadeh, A., Noor, M. A., & Noor, K. I. (2009). Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Analysis: Theory, Methods & Applications, 71(7-8), 3471-3476.
[8] Aslam Noor, M. (1994). Variational-like inequalities. Optimization, 30(4), 323-330.
[9] Du, T., Liao, J., Chen, L., & Awan, M. U. (2016). Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions. Journal of Inequalities and Applications, 2016, 1-24. [10] Mitrinovic, D. S., Pecaric, J., & Fink, A. M. (2013). Classical and New Inequalities in Analysis. Springer Science & Business Media.
[11] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). elsevier.