Review Note on Hermite-Hadamard Type Integral Inequality ViaRiemann-Liouville Fractional Integral Operators
DOI:
https://doi.org/10.48165/gjs.2024.1107Keywords:
Preinvex functions, Hadamard inequality, Ψ-Riemann-Liouville Fractional Integral OpratorAbstract
In the context of fractional calculus, the concept of convexity is primarily used to tackle various challenges in both theoretical and applied research. This review paper aims to present Hermite–Hadamard (H-H) inequalities related to different classes of
convex functions via Riemann-Liouville fractional integral operators.
References
[1] Hanson, M.A. On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550.
[2] Weir, T.; Mond, B. Preinvex functions in multiple-objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38.
[3] Ben-Isreal, A.; Mond, B. What is invexity? J. Aust. Math. Soc. Ser. B. 1986, 28, 1–9. 7
[4] Barani, A.; Ghazanfari, G.; Dragomir, S. S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 247.
[5] Du, T.T.; Liao, J.G.; Li, Y. J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)–preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112– 3126.
[6] Deng, Y.; Kalsoom, H.; Wu, S. Some new Quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)—preinvex functions. Symmetry 2019, 11, 1283.
[7] Farajzadeh, A.; Noor, M.A.; Noor, K.I. Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Anal. 2009, 71, 3471–3476.
[8] Noor, M.A. Variational–like inequalities. Optimization 1994, 30, 323–330.
[9] Du, T.S.; Liao, J.G.; Chen, L.G.; Awan, M.U. Properties and Riemann–Liouville frac-tional Hermite–Hadamard inequalities for the generalized (α, m)-preinvex functions. J. Inequal. Appl. 2016, 2016, 306.
[10] Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic: Dordrecht, The Netherlands, 1993.
[11] Anatoli, K. Theory and applications of fractional differential equations, 204, 2006, else vier.