Mathematical Modeling and analysis of dynamics of Neisseria Gonorrhea Disease with Self Protection, Treatment and Natural Immunity
Keywords:
Neisseria Gonorrhea, Stability analysis, Numerical simulation, Sensitivity analysisAbstract
We present a mathematical framework for the infection of Neisseria gonorrhea in this article. Compared to a number of earlier models in the literature, the new model is more comprehensive and covers a wide range of concepts. The local and global stability, sensitivity analysis, of the model are examined. The results are illustrated with algorithmic experiments. A computational analysis of the model is examined. highlighting the impact of different values of parameters on the model’s dynamics and offering potential avenues for further research. In this article, we present a robust mathematical framework for modeling the infection dynamics of Neisseria Gonorrhoea. Unlike earlier models in the literature, our approach is more comprehensive, integrating a wide array of concepts related to the infection process. We conduct an in-depth analysis of both local and global stability, along with a sensitivity analysis of the model parameters. The results are supported by algorithmic experiments that illustrate the model’s behavior under varying conditions. Additionally, we perform a thorough computational analysis, emphasizing how different parameter values influence the model’s dynamics. This work not only enhances our understanding of gonorrhea transmission but also identifies potential avenues for further research in this critical area of public health. Keywords: Neisseria Gonorrhea, Stability analysis, Numerical simulation, Sensitivity analysis
References
[1] CDC, “Guidelines for treatment of sexually transmitted diseases”. Morbidity and Mortality Weekly Report, 47 (RR-1).(1998).
[2] Anon. http://www.raiseinitiative.org. 2010a Anon . http://www.cdc.gov/nchstp/dstd/Fact Sheets/FactsGonorrhea.htm. (2010b).
[3] Centers for Disease Control and Prevention (CDC). “Gonorrhea – CDC Fact Sheet; 2015”. (Detailed Version). Available at: http://www.cdc.gov/std/gonorrhea/STDFactgonorrhea-detailed.htm (Accessed December 17, 2015).
[4] Castillo-Chaves C., Z.Feng, and W.Huang,“On the Computation of Basic Reproduction Number R0 and its Role on Mathematical Approaches for Emerging and Re- Emerging Infectious Disease, An Introduction” ,1, 229, (2002).
[5] Centres for Disease Control and Prevention (CDC) “Gonorrhoea detailed fact sheet” (2016)
[6] Flaming D, Wassorheit J. “From epidemiological synergy to public health policy and practices: the contribution of other sexuall transmitted disease to sexual transmission of HIV infection”. Sex transm DIS, 75(1), 3-17(1999).
[7] Unemo, M., Ross, J., & Serwin, A. B. “WHO global gonococcal antimicrobial surveillance program (GASP) report”. Sexually Transmitted Infections, 95(5), 343-348.(2019).
[8] Keeling, M. J., & Rohani, P. “ Modeling infectious diseases in humans and animals”. Princeton University Press.(2008).
[9] Garnett, G. P. “The geographical and temporal evolution of sexually transmitted disease epidemics. Sexually Transmitted Infections”, 78(Suppl 1), i14–i19.(2002).
[10] Alirol, E.Wi, T. E, Bala, M, Bazzo, M. L., Panda, S., & Deal, C. Gonorrhea , “Antimicrobial resistance in Neisseria gonorrhoeae and public health implications”. Microbiology Spectrum, 5(4), (2017).
[11] Holmes, K. K., Levine, R., & Weaver, M. “Effectiveness of condoms in preventing sexually transmitted infections”. Bulletin of the World Health Organization, 82(6), 454-461.(2004).
[12] Semchenko EA, et al, “clinic infectious Disease”: doi: 10.1093/cid/ciy106/(2018).
[13] Katz, D. A., Dombrowski, J. C., Bell, T. R., Kerani, R. P., Golden, M. R., & Harrington, R. D. “HIV incidence among men who have sex with men after diagnosis with sexually transmitted infections”. Sexually Transmitted Diseases, 46(12), 793-797.(2019).
[14] Kermack, W. O., & McKendrick, A. G. “ A contribution to the mathematical theory of epidemics”. Proceedings of the Royal Society of London. Series A, 115(772), 700-721.(1927).
[15] C. Castillo-Chavez, “Mathematical Approaches for Emerging and Reemerging Infectious Diseases”: An Introduction, Vol. 1, Springer-Verlang, 2002, p. 229. in turkey. Comput. Biol. Med. 141, 105044 (2022).
[16] C. Vargas-De-Leon, “Constructions of Lyapunov functions for classics SIS, SIR and SIRS ´ epidemic model with variable population size”, Foro-Red-Mat Rev. electronica Conten. matematico https://www.academia.edu/ download/30259499/Article-SIS-vu.pdf, 26 (5)1 (2009).
[17] Blower, S. M., & McLean, A. R. “Prognosis of gonorrhea and chlamydia infections in the absence of treatment: The case for more aggressive intervention.” Journal of Infectious Diseases, 170(2), 234- 242.(1994).
[18] Murray, C. J. L., & Lopez, A. D. “The Global Burden of Disease”. Harvard University Press.(1996).
[19] Lipsitch, M., & Moxon, E. R. “The definition of epidemic: Perspectives on the impact of gonorrhea.” American Journal of Public Health, 87(7), 1047-1050.(1997).
[20] Kretzschmar, M., & Mollema, L. “Cost-effectiveness of gonorrhea interventions: A model-based approach.” Epidemiology and Infection, 135(6), 909-918.(2007).
[21] Schellenberg, J. R., & Kamali, A. “Control of gonorrhea in the population: Modelling the impact of interventions.” Journal of Epidemiology and Community Health, 50(3), 336-341.(1996).
[22] Welch, D., & Canavan, C. “Assessment of secondary prevention strategies for gonorrhea: A modeling study.” Sexually Transmitted Infections, 76(2), 147-151.(2000).
[23] Paltiel, A. D., & Zheng, A. “Vaccination strategies for gonorrhea: Modeling and analysis.” The Lancet Infectious Diseases, 7(6), 435-443. (2007).
[24] Hook, E. W., & Handsfield, H. H. “Control of gonorrhea and chlamydia: Immune responses and therapeutic strategies.” Sexually Transmitted Diseases, 24(4), 212-219.(1997).
[25] L. Sadek, O. Sadek, H. T. Alaoui, M. S. Abdo, K. Shah, T. Abdeljawad, “Fractional order modeling of predicting covid-19 with isolation and vaccination strategies in Morocco”. CMES-Comput. Model. Eng. Sci 136, 1931–1950 (2023).
[26] K. Shah, T. Abdeljawad, “Study of a mathematical model of covid-19 outbreak using some advanced analysis” .Waves in Random and Complex Mediap. p 1–18, (2022).
[27] K. Shah, M. Sinan, T. Abdeljawad, M. El-Shorbagy, B. Abdalla, M. S. Abualrub, et al., “A detailed study of a fractal-fractional transmission dynamical model of viral infectious disease with vaccination” . Complexity, (2022).
[28] S. Pak, “Solitary wave solutions for the RLW equation by he’s semi inverse method”. Int. J. Nonlinear Sci. Numer. Simul. 10(4), 505–508 (2009).
[29] E. Mtisi, H. Rwezara, J. M. Tchuenche, “A mathematical analysis ofmalaria and tuberculosis codynamics” Discrete Contin. Dyn.Syst, Ser. B12 4 (2009).
[30] M. Y. Li, H. L. Smith, L. Wang “Global dynamics of an SEIR epidemic model with vertical transmission” . SIAM J. Appl. Mathe. 62(1), 58–69 (2001).
[31] R. Mahardika, Y. Winowati, D. Sumanato, “Routh-Hurwitz criterion and bifurcation method for stability analysis of tuberculosis transmission model” . J. Phys. Conf.70,1272-1296.(2019).
[32] N. Ali, G. Zaman, A.S. Alshomrani “Optimal control strategy of HIV-1 epidemic model for recombinant virus” Cogent. Math. 4(1), 1293468-1293478 (2017).
[33] Fleming, D. T., & Wasserheit, J. N. ”Challenges in controlling gonorrhea: Insights from modeling.” Journal of Infectious Diseases, 179(Suppl 2), S135-S141. Transmitted Diseases,(1999).