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ABSTRACT

The Pascal polynomial approach is presented in this paper as an effective method
for solving inverse partial differential equations (PDEs) of second order. Two
different approaches are suggested. In the first method, Pascal polynomials are used
to approximate the source term and the unknown dependent variable. A system
of algebraic equations that can be solved is then produced by substituting these
approximations and their derivatives into the governing equations and boundary
conditions. By imposing a requirement that the source term satisfy Laplace’s
equation, the second approach reformulate the inverse problem as a direct one, which
is subsequently solved via the Pascal polynomial method. We examine a number
of benchmark problems to assess the suggested strategy, showing that it produces
high accuracy when given accurate input data. Even though input data noise lowers
accuracy, the numerical results are still reliable and acceptable. Despite its sensitivity
to noise, these results demonstrate the potential of the Pascal polynomial approach
for solving direct and inverse PDEs, especially when the input data is reliable.

1. INTRODUCTION

In many disciplines, including biology, physics, and engineering, inverse problems are common. Such problems arise from
mathematical models of various social and physical phenomena. These models are based on fundamental principles of
mathematics such as partial differential equations (PDEs), ordinary differential equations (ODEs), and integral equations
(IEs). The solutions derived from these models enable predictions about the behavior of physical systems under differ-
ent conditions, provided that all essential information is available. In the context of differential equations (DEs), such
information may encompass initial and boundary conditions, source terms, coefficients associated with derivatives, and
the geometry of the computational domain. When this data sufficiently characterizes the system, mathematical modeling
becomes a feasible approach for analyzing physical phenomena.

Inverse heat source problems (IHSPs) find significant applications in engineering and biological sciences, such as detecting
pollutants, identifying structural cracks, conducting geographical surveys, studying heat transfer, and analyzing electro-
magnetic phenomena [1, 2]. Often, the interior heat source term may be unavailable due to challenges in data collection,
thereby giving rise to IHSPs [3]. Addressing the complexities associated with IHSPs, including the absence of source
terms, typically requires additional information, such as boundary conditions, numerical data collected at specific points,
or measurements within the accessible region of the boundary. These problems are inherently ill-posed, making their
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numerical resolution challenging. Recovering the missing heat source term further complicates the process, and only a
limited number of studies address these challenges [3, 4]. For instance, [4] used the method of fundamental solutions to
address steady-state heat conduction problems involving a heat source term. The technique relied on the availability of
both temperature and heat flux data on the same boundary to guarantee the uniqueness of the solution. To mitigate ill-
conditioning in the coefficient matrix, a regularized solution was obtained using a truncated singular value decomposition
(TSVD) method. Building upon this, [3] implemented a meshless generalized finite difference method (GFDM) for similar
problems. Moreover, the method of fundamental solutions was explored in [5, 6], while [1] studied the inverse source
problem for the Helmholtz equation, demonstrating solution uniqueness and local stability under specified boundary
conditions and derivatives.

The GFDM has also been employed to tackle inverse biharmonic boundary value problems [7]. This investigation included
adding noise to boundary conditions and imposing over-specified constraints on part of the boundary to assess method
stability. Subsequently, [8] extended the GFDM to study a two-dimensional inverse Cauchy problem for a second-order
linear PDE. Over-specified conditions on some boundary segments and noisy boundary data were used to illustrate the
robustness of the numerical technique. For a comprehensive discussion on inverse Cauchy problems, readers are directed
to [12–17], which detail various numerical methods for these problems.

This study addresses a steady-state heat conduction problem using the Pascal polynomial method. Consider a bounded
domain Ω where the IHSP is to be solved, with ∂Ω representing its boundary. The equation that represents steady-state
heat conduction is given as:

∆Ue(x, y) = Es(x, y), (x, y) ∈ Ω, (1)

Here, ∆ signifies the Laplacian operator, while Es(x, y) and Ue(x, y) represent the heat source term and the potential field,
respectively. When the source term Es(x, y) is predefined, equation (1) is referred to as a direct problem. In such cases,
solving the equation involves approximating only the function Ue(x, y) using Pascal polynomial approximation. However,
a key focus of this study is to treat the source term Es(x, y) as an unknown quantity. Under this assumption, equation (1)
transitions into an inverse problem, where the goal is to determine the heat source Es(x, y). It is important to highlight
that such inverse problems often lack a unique solution [4]. Given the unknown nature of the heat source, we assume that
the temperature and heat flux are specified along the accessible boundary portion ∂Ω [3], as expressed by the following
conditions:

Ue(x, y) = d1(x, y), (x, y) ∈ ∂Ω,
∂

∂n
Ue(x, y) = d2(x, y), (x, y) ∈ ∂Ω,

(2)

Here, n denotes the outward unit normal vector to the boundary ∂Ω, and d1(x, y) and d2(x, y) are known values. To solve
equation (1) along with the boundary conditions in (2), it is converted into a fourth-order elliptic partial differential
equation. For example, if the source term Es(x, y) is harmonic, i.e., it satisfies ∆Es(x, y) = 0 or ∇2Es(x, y) = 0 within the
domain Ω, then equation (1) simplifies to a direct problem. By applying the ∇2 operator to both sides of equation (1), we
obtain:

∇4Ue(x, y) :=
∂4

∂x4
Ue(x, y) + 2

∂4

∂x2∂y2 Ue(x, y) +
∂4

∂y4 Ue(x, y) = 0, (x, y) ∈ Ω, (3)

with the corresponding boundary conditions remaining as defined in equation (2). Additionally, equation (1) was solved
by approximating both unknown functions using the Pascal polynomial method, which will be elaborated in the following
sections.

2. PASCAL POLYNOMIAL COLLOCATION METHOD

This section applies the Pascal polynomial collocation method (CMBP) to solve the steady-state Inverse Heat Source
Problems (IHSPs) given by (1), along with the associated boundary conditions (2).

In this approach, we approximate both the function of interest, Ue(x, y), and the source term, Es(x, y), using the Pascal
polynomial collocation method (CMBP). The numerical procedure of CMBP begins by considering the following:
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Ue(x, y) =
M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷx
ℓ− ȷ
y
ȷ−1, (4)

and

Es(x, y) =
M∑
ℓ=1

ℓ∑
ȷ=1

βℓ ȷx
ℓ− ȷ
y
ȷ−1. (5)

We proceed by computing the second derivatives of equation (1) with respect to the spatial variables x and y.

∂2

∂x2
Ue(x, y) =

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ(ℓ − ȷ)(ℓ − ȷ − 1)xℓ− ȷ−2
y
ȷ−1,

∂2

∂y2 Ue(x, y) =
M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ( ȷ − 1)( ȷ − 2)xℓ− ȷy ȷ−3.

(6)

We now consider the following set of nodes:

Ωk = (xι1 , yζ1 ) ∈ Ω, ι1 = ζ1 = 1, 2, 3, · · · ,N, and , (7)

in the domain [a, b]2, with the boundary nodes denoted as:

Ωb = (xι2 , yζ2 ) ∈ ∂Ω, ι2 = ζ2 = 1, 2, 3, · · · ,Nb, and (8)

Substituting equations (5) and (6) into (1) and applying the collocation method at the nodes within the domain Ωk (7), we
derive a system of N2 equations withM(M + 1) unknowns.

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ
[
(ℓ − ȷ)(ℓ − ȷ − 1)xℓ− ȷ−2

ι y
ȷ−1
ζ + ( ȷ − 1)( ȷ − 2)xℓ− ȷι y

ȷ−3
ζ

]
−

M∑
ℓ=1

ℓ∑
ȷ=1

βℓ ȷx
ℓ− ȷ
ι y

ȷ−1
ζ = 0 (xι, yζ) ∈ Ωk.

(9)

The total number of nodes, N2, significantly exceeds the count of unknowns, M(M + 1), resulting in an overdetermined
system. Additionally, the boundary conditions produce another set of equations, comprising 2Nb equations that also
involveM(M + 1) unknowns.
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M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ(ℓ − ȷ)aℓ− ȷ−1
y
ȷ−1
ζ1
= d2(a, yζ1 ) a ≤ yζ1 ≤ b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ(ℓ − ȷ)bℓ− ȷ−1
y
ȷ−1
ζ1
= d2(b, yζ1 ) a ≤ yζ1 ≤ b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ( ȷ − 1)xℓ− ȷι1 a ȷ−2 = d2(xι1 , a), a < xι1 < b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷ( ȷ − 1)xℓ− ȷι1 b ȷ−2 = d2(xι1 , b), a < xι1 < b.

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷaℓ− ȷy
ȷ−1
ζ1
= d1(a, yζ1 ), a ≤ yζ1 ≤ b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷx
ℓ− ȷ
ι1 b ȷ−1 = d1(xι1 , b), a < xι1 < b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷx
ℓ− ȷ
ι1 a ȷ−1 = d1(xι1 , a), a < xι1 < b,

M∑
ℓ=1

ℓ∑
ȷ=1

λℓ ȷbℓ− ȷy
ȷ−1
ζ1
= d1(b, yζ1 ), a ≤ yζ1 ≤ b,

(10)

The overdetermined systems of equations (9) and (10) can be solved together to determine the unknowns λℓ ȷ and βℓ ȷ.
Once these coefficients are determined, they are substituted into equations (4) and (5) to yield the approximated solutions.
However, since the values of the source terms Es(x, y) are not specified at the boundaries of the computational domain, this
may lead to an imprecise approximation of Es(x, y). Conversely, the best numerical results for Ue(x, y) can be obtained,
and its derivatives can be approximated more accurately. Thus, the source term Es(x, y) is recovered from the following
equation:

Es(x, y) =
∂2

∂x2
Ue(x, y) +

∂2

∂y2 Ue(x, y), (x, y) ∈ Ω.

This approach addresses inverse problems directly, eliminating the requirement for any transformations.

2.1 Transformation of the Inverse Problem to the Direct Problem

This section outlines the procedure for converting the inverse heat conduction problem (1) into an equivalent direct
problem. The approach assumes that the source follows the Laplace equation.

∂2

∂x2
Es(x, y) +

∂2

∂y2 Es(x, y) = 0

By taking the Laplacian operator ∇2 of both sides of equation (1), the direct problem is derived in the following manner:

∂4

∂x4
Ue(x, y) + 2

∂4

∂x2∂y2 Ue(x, y) +
∂4

∂y4 Ue(x, y) = 0, (x, y) ∈ Ω, (11)

The problem is subject to the boundary condition (2). By substituting the required derivatives into equation (11) and
applying collocation at the nodes Ωk, a system of linear equations is obtained, consisting of N2 equations and M(M +
1)/2 unknowns. A second system arises from the boundary conditions. These two systems are solved to determine the
coefficients λℓ ȷ, which are then used in equation (4) to obtain the numerical solution to the problem. Following this, the
source term is recovered using equation (1). This process is referred to as CMBPT in this work.
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3. NUMERICAL RESULTS

This section presents the numerical results obtained using the proposed CMBP and CMBPT methods, comparing them
with existing results from the literature. Furthermore, an in-depth analysis of the stability of the proposed method is
provided, focusing on its response to noise in the input data. In this study, noise is modeled within the exact boundary
conditions using the equation:

Bn = (Rvσ + 1)bn,

The random variable Rv is generated using the MATLAB ’rand’ function, while bn denotes the true boundary data. The
noise level is represented by σ. To evaluate the effectiveness of the proposed methods, the following error norms are
applied:

L∞ = max
(x,y)∈Ω

|Ue(x, y) − Uapp|, RMS =

√√√∑N
k=1

(
Ue(xk, yk) − Uapp

)2∑N
k=1 Ue(xk, yk)2

,

The exact solution at the kth collocation point is denoted by Ue(xk, yk), while Uapp refers to the numerical approximation.
The boundary is considered to be the entire boundary of the domain Ω, unless stated otherwise. In both methods, the
parameterM is assigned a value of 9, unless indicated otherwise.

4. EXAMPLES

In this section, various examples have been solved numerically to illustrate the robustness of the present method.

Example 1. In this example, we focus on the following equation [18]:

∂4

∂x4
Ue(x, y) +

∂4

∂y4 Ue(x, y) + 2
∂4

∂x2∂y2 Ue(x, y) + 2y sin(x)
∂

∂x
Ue(x, y)−

y cos(x)
∂

∂y
Ue(x, y) + xyUe(x, y) = Es(x, y), (x, y) ∈ Ω

(12)

with the following Dirichlet and Laplace boundary conditions

Ue(x, y) = g1(x, y), (x, y) ∈ ∂Ω

∂2

∂x2
Ue(x, y) +

∂2

∂y2 Ue(x, y) = g2(x, y), (x, y) ∈ ∂Ω,

and the Es(x, y) is given as:

Es(x, y) =x cos(y) + y sin(x) + xy (x cos(y) + y sin(x))−
y cos(x) (sin(x) − x sin(y)) + 2y sin(x) (cos(y) + y cos(x))

An Ellipse types of domain is considered, which can be defined by parametrically as:

x = 3 cos(φ)/2
y = sin(φ).

The arrangement of uniform collocation points in the specified domain for this example is shown in Figure (1). The results
of CMBP are presented in Table (I). As observed in the earlier example, CMBP proves to be highly accurate in comparison
with the numerical methods discussed in [18]. The RMS norm values for Multi-quadric and thin spline are 4.0 × 10−11,
3.3 × 10−11, and 1.0 × 10−10, while the method proposed in this study achieves 2.8424 × 10−17 with the same number of
nodes. The table demonstrates that CMBP significantly outperforms the r9, r11, and MQ methods in terms of RMS errors
for sample sizes N = 200 and N = 300. Furthermore, within the CMBP framework, an increase in the parameter M
results in a reduction of RMS errors, indicating improved performance with higher M values. The subsequent examples
will address solving inverse problems using CMBP and CMBPT.
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Fig. 1. Nodes arrangement for Example (1) in the domain.

TABLE I. Comparison of RMS error of CMBP against different methods.

N RMS (r9) [18] RMS (r11) [18] RMS (MQ)[18]
200 1.3 × 10−10 1.4 × 10−10 2.4 × 10−10

300 4.0 × 10−11 3.3 × 10−11 1.0 × 10−10

CMBP
N RMS (M = 15) RMS (M = 20) RMS (M = 25)

200 8.3553e − 13 1.9956e − 17 4.1368e − 17
300 7.2716e − 13 5.5688e − 17 3.3612e − 17

Example 2. We examine the inverse heat conduction problem within a square region defined by [0, 6]2. The source term
Es(x, y) and the exact solution Ue(x, y) are taken from [3].

Ue(x, y) =
y2 + x2

4
, (13)

Es(x, y) = 1. (14)

The function Es(x, y) is harmonic throughout the region Ω. To address this problem, the CMBP and CMBP1 techniques
are applied. The distribution of nodes within the domain [0, 6]2 is illustrated in Figure (2).

The numerical results of Example (2) are presented in Figures (3), (4), and (5). Figure (3) shows the maximum error and
relative error curves using CMBPT. In Figures (3)a and (4)a, exact data are used, while Figures (3)b and (4)b include 1%
noisy data (i.e., σ = 1%). The results indicate that both the CMBP and CMBPT methods perform well when exact input
data are applied, with CMBP slightly outperforming CMBPT in Figures (3) and (4) for exact data. However, when noise
are introduced into the input data, both methods yield less accurate results, but they remain suitable for solving inverse
problems (IPs). As the noise in the boundary conditions is minimized, the outcomes of these methods converge toward
the analytical solution. In summary, both methods can effectively recover the source terms Es(x, y) and Ue(x, y) when the
boundary conditions are exact.

According to [3], utilizing the generalized finite difference approach with 625 uniform nodes and the precise input data,
the highest error norm for the same problem is 8.26 × 10−8. However, [6], which likewise uses accurate input data, finds
a maximum error norm of 2.13 × 10−7 for the same problem. As seen in Figures (3) and (4), the CMBP and CMBPT
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Fig. 2. Nodes arrangement of Example (2) in the domain.

approaches achieve lower maximum error norms with fewer uniform nodes in the domain, outperforming the techniques
in [3, 4] in terms of accuracy.
Figure (5) shows the surface plots of the source term Es(x, y) and the solution Ue(x, y). Both the precise input data and
input data with 1% additional noise are used in the study to evaluate the accuracy and performance of the suggested
numerical algorithms.

5. CONCLUSION

This study presents the Pascal polynomial method for solving fourth-order partial differential equations (PDEs) and
second-order inverse PDEs. For inverse problems, the source term Es is considered unknown and satisfies the homoge-
neous Laplace equation. The second-order inverse problem is then reformulated as a fourth-order direct problem, which
is numerically addressed through the Pascal polynomial method applied to the dependent variable Ue. The source term Es

is then determined by inserting the second-order derivatives back into the governing equation (1).

Furthermore, we approximate both Ue and Es directly using Pascal polynomials, bypassing the need to convert the inverse
problem into a direct one. This approach is advantageous when finding a suitable transformation is challenging. Using
this technique, the coefficients involved in the approximation of Es are determined. However, the lack of source term
information at the accessible boundary results in poor numerical accuracy. To address this, Es is retrieved from (1) by
incorporating the necessary derivatives.

An in-depth examination of the Pascal polynomial method for solving inverse problems and fourth-order PDEs highlights
several key insights into the performance of CMBP and CMBPT.

First, CMBP and CMBPT outperform many current numerical techniques in terms of accuracy and efficiency when given
precise input data. These techniques use Pascal polynomials to produce better computational results, which are confirmed
by theoretical analysis and benchmark examples.

However, noise in the input data affects how well they perform. In spite of this, CMBP and CMBPT achieve reliability
that is consistent with accepted numerical standards while maintaining a competitive level of accuracy even in noisy
environments.

In conclusion, CMBP and CMBPT are effective methods for resolving fourth-order PDEs and inverse problems, especially
when used with precise input data. Even though noise lessens their efficacy, they are still as accurate as the industry’s top
techniques. They are useful for solving challenging mathematical problems because of their resilience.
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(a) Accurate input information

(b) Input data with a noise level of 1%

Fig. 3. Error analysis in relation to the number of nodes using CMBPT of Example (2).
(a) Accurate input information

(b) Input data with a noise level of 1%

Fig. 4. Error analysis in relation to the number of nodes using CMBP of Example (2).
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(a) Accurate input information

(b) Input data with a noise level of 1%

Fig. 5. Visual depictions of the outcomes through the CMBPT of Example (2) with M = 90.
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