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A B S T R A C T  
 

This research aims to determine the approximate analytical solution of a one-dimensional time 
fractional-order cancer model using the homotopy perturbation method (HPM). Initially, the 
fractional derivative component which is in the Caputo sense converted into an integer order 
derivative by using the Laplace transform method, followed by the technique mentioned above. 
The tasted numerical examples illustrate the feasibility and reliability of the proposed approach 
with a fractional-order derivative. Additionally, the impact of the fractional order on the solution's 
nature is analyzed graphically and numerically. 

 

 

 

 
  

 

 

1. INTRODUCTION 

Fractional calculus has gained much attention and is applied in numerous fields in engineering, viscoelasticity, fluid 
mechanics, electromagnetic waves, diffusion waves, earthquake, epidemiology, and mathematical biology. These all can be 
expressed in fractional order. Many mathematical models are partial differential equations (PDEs), making their explicit 
solution challenging. As a result, various ways to efficiently solve the models have emerged. For example, the fractional 
diffusion-wave equation is solved with the Riemann-Liouville fractional derivative. The method's convergence, stability, 
and consistency are demonstrated through both theoretical and numerical examples [1]. Similarly, finite difference 
approaches are utilized in this study to address the difficult two-dimensional cable problem [2]. In addition, the higher-order 
implicit finite difference iterative technique is proposed for solving two-dimensional temporal fractional Cable equations. 
Numerical examples and theoretical analysis demonstrated the method's utility [3]. Another study proposed a unique 
numerical approach (MFEGM) to solve the time-fractional advection-diffusion-reaction problem. Furthermore, this indicates 
that MFEGM outperforms the Crank-Nicolson finite difference [4]. Similarly, Khan et al. [5] find solitary wave solutions 
for the generalized Burgers-Huxley equation (B-HE) by solving partial differential equations (PDEs). Another study 
proposes a new auxiliary approach for the traveling wave solutions of the space-time fractional Cahn-Hilliard equation and 
the space-time fractional symmetric regularized long-wave equation [6]. Furthermore, in the article [7], the Khater approach 
provides new accurate traveling wave solutions to the non-linear space-time variable-order fractional shallow water wave 
equation in the Caputo fractional derivative sense. Moreover, Suardi et al. [8] focus on precious metal recycling and image 
processing of batteries to detect them in the e-waste to tackle the e-waste issues. The paper underlines a modified U-Net 
CNN with preprocessing, ensuring the accurate segmentation of batteries in X-ray images. This work is done as part of an 
effort to make e-waste recycling more sustainable, and according to the research, the most efficient one is the U-Net with a 
dice coefficient. Likewise, another numerical approach using the finite difference method is developed, and implicit 
algorithms such as Crank-Nicholson guarantee scalability and stability for long-term heat and mass transport simulations 
[9]. The optimal homotopy asymptotic method (OHAM) is utilized for the approximation of Lane-Emden and Emden-Fowler 
starting and boundary value problems by Khan et al. [10]. The obtained results are matched with HPM, ADM, and VIM. In 
this paper, the OHAM is used to approximate some well-known linear and nonlinear two-point boundary value problems. 
Results are compared with an exact solution and homotopy perturbation [11]. The unconditional stable method is proposed 

Global Journal of Sciences 
Volume 1, Issue 2, 2024, Pages 1-11 

DOI: https://doi.org/10.48165/gjs.2024.1201; ISSN: 3049-0456 

https://acspublisher.com/journals/index.php/gjs 

mailto:umairkhanmath@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://mesopotamian.press/journals/index.php/BJM
https://doi.org/10.48165/gjs.2024.1201


 

 

2 Shahzadi et al, Global Journal of Sciences, 1(2), 2024, 1-11 

to solve the two-dimensional fractional Rayleigh-Stokes equation. This research investigated the stability, convergence, and 
accuracy analyses of the method combined with fractional derivatives and the fourth-order compact procedure [12]. In 
addition, an explicit group iterative method is proposed to approximate the solution of the two-dimensional fractional 
Rayleigh-Stokes problem for a heated generalized second-grade fluid. The numerical examples are used to verify the 
proposed approach, and the matrix method using a high-order compact C-N finite difference method is utilized to analyze 
the stability and convergence of the model [13]. The high-order compact iterative method is proposed for solving the two-
dimensional time-fractional sub-diffusion equation. In the proposed approach, numerical examples verified the high-order 
convergence and effectiveness of the proposed method [14]. Similarly, a high-order implicit scheme method is presented for 
solving the two-dimensional time-fractional diffusion equation [15]. In the proposed method, convergence and accuracy are 
assessed using numerical examples. The closed-form traveling wave solution for the nonlinear fractional and variable-order 
fractional differential equations is discussed in [16, 17]. The reported results are based on the proposed method, which is 
very effective and valid for the models arising in mathematical physics. Salama et al. [18] considered a new modified hybrid 
explicit group iterative method to solve the two-space-dimension time-fractional diffusion equation. The approach is used 
as Laplace transformation for fractional operators and finite difference scheme-based group strategy for space derivatives. 
Theoretical analysis, numerical results, and comparison are carried out successfully, showing that the considered method is 
very accurate and efficient. In another study [19], they discussed the two explicit group numerical schemes through Crank-
Nicolson schemes on different grids. The numerical results show that the said schemes reduced the computational time, 
number of iterations, and obtained high accuracy. Further, the comprehensive numerical study of the fractional-order 
differential and variable-order fractional equations can be seen in [20-35].  

The above-discussed numerical approaches are feasible only for linear fractional differential equations. The nonlinear 
fractional differential equations can be solved by the approximate analytical approach and many researchers have solved 
complex nonlinear differential equations by various techniques such as Sadia et al. [36] applied a multi-step generalized 
differential transform method (MSGDTM) to the nonlinear model of the growth of tumor cells. They show that the solution 
acquired by MSGDTM is highly effective and accurate. Najafi and Basirzadeh [37] discussed optimal control HPM by using 
the HPM. They proved the effectiveness of OCHPM by comparing the attained numerical solution with HPM and claimed 
that the OCHPM method is effectual and originates powerful solutions for therapeutic models. Panchal and Patel [38] 
implemented the differential transform method (DTM) on the growth of the tumor model. They explained the outcomes of 
chemotherapy and revealed that if the concentration of chemotherapy drug is inappropriate then the growth of tumor cells 
increases in a large number or maybe causes a decrease in effector cells. Farman et al. [39] focused on a model of fractional-
order immunotherapy bladder cancer and considered the BCG vaccine for its treatment where the derivative is described in 
Caputo of order (0,1]. They observed two cases of the growth rate of cells and claimed that both cases are stable in a 
fractional-order system. The result indicates that the fractional order provides great changes as compared to the classical 
derivative in terms of control of disease in the early stage. Kapoor [40] presented the solution of coupled 1D non-linear 
Burgers’ equation by using HPM. The analytical solution is easily acquired by utilizing a general formula which is in the 
form of a recurrence relation. The exact solution is achieved in terms of power series (convergent in nature). Jitendra et al. 
[41] analyzed a mathematical model of a space-time fractional bio-heat equation. They used the fractional backward finite 
difference technique. They first converted the problem into an initial value problem and then applied HPM. Biazar and 
Aminikhah [42] adopted the variation iteration method (VIM) to work on a nonlinear Bergurs equation. By using VIM, it is 
feasible to unfold the exact solution as it is a highly effective method for solving a wide variety of problems. Compared to 
Adomian’s decomposition method, VIM gives significant and efficient outcomes.     

This study aims to find the approximate analytical solution for the time fractional-order cancer model. The Laplace 
transformation is used to convert the fractional order derivative operator into the order of an integer reducing the 
computational complexity. Further, the HPM method was applied to find the solution to the mentioned model. The 
approximate analytical solutions confirmed the implementation applicability and efficiency of the method. It shows that the 
proposed transformation reduces the complexity and computational work which is a more reliable and efficient tool for 
simulating the fractional order differential model. To the best of our knowledge, there is no similar work in the literature for 
the fractional-order cancer model.  

The sequence of this paper is organized as follows: The literature is discussed in Section 1, and the basic definitions and 
properties are described in Section 2. In Section 3, The methodology of HPM is explained in detail. Section 4, explains the 
application and results, Section 5 adds the discussion part of the obtained graphical and numerical results, and the Conclusion 
is presented in Section 6. 

In this study, consider the one-dimensional non-homogenous fractional-order cancer model [43]: 

                    𝑐𝐷𝑡
𝛼𝑓(𝑥, 𝑡) =

𝜕2𝑓(𝑥,𝑡)

𝜕𝑥2 − 𝑘(𝑥, 𝑡)𝑓(𝑥, 𝑡),   𝑡 > 0,  0 < 𝛼 ≤ 1,    (1) 

where 𝑐𝐷𝑡
𝛼 is a fractional-order differential operator which is defined in the Caputo sense, 𝑘(𝑥, 𝑡) symbolize the therapy-

dependent killing ratio, whereas 𝑓(𝑥, 𝑡) indicate the number of tumor cells at position 𝑥 and 𝑡 represent the time. 𝑘 cannot 
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be specified, it can be expressed in three different ways, as a constant, a function of time, or a function that is not time-
dependent. 

2. Basic Preliminaries 

This section presents the transformation for fractional order operator and basic definitions of fractional-order operator 
along with its properties as follows. 

Definition 1. The time-fractional Caputo derivative operator with order 𝛼 of the function 𝑓(𝑥) is defined as [37]. 

                 𝐷∗
𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝐷𝛼𝑓(𝑥) =

1

Γ(𝑚−𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼−1𝛼

0
𝑓(𝑚)(𝑡)𝑑𝑡,                                    (2) 

                                   for 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑍, 𝑥 > 0, 𝑓 ∈ 𝐶−1
𝑚 .  

Some properties are as follows: 

If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑍, 𝑥 > 0, 𝑓 ∈ 𝐶𝜇
𝑚, 𝜇 ≥ −1, then  

𝐷∗
𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥),                                                                                             

𝐽𝛼𝐷∗
𝛼𝑓(𝑥) = 𝑓(𝑥) + ∑

𝑓(𝑘)(0+)𝑥𝑘

𝑘!
,𝑚−1

𝑘=0       𝑥 > 0.                                              

Definition 2. The transformed form of fractional order Caputo derivative operator of order 𝛼 can be defined as 

    𝑐𝐷𝑡
𝛼𝑓(𝑥, 𝑡) = 𝛼

𝜕𝑓

𝜕𝑡
+ (1 − 𝛼)𝑓(𝑥, 𝑡) − (1 − 𝛼)𝑓(𝑥, 0).    (3) 

3. Homotopy Perturbation Method (HPM) 

The homotopy perturbation method (HPM) is a semi-analytical technique for solving linear as well as nonlinear 
fractional-order partial differential equations. The method may also be used to solve a system of coupled linear and nonlinear 
differential equations. 

Consider the general form of the following differential equation 

 𝑐𝐷𝑡
𝛼(𝑓) + 𝐿(𝑓) + 𝑅(𝑓) + 𝑁(𝑓) = 0, 𝑚 − 1 < 𝛼 < 𝑚,                                                           (4) 

we can assume the solution of the equation in the form  

                     𝑓 = ∑ 𝑓𝑘
∞
𝑘=0 .  

Applying the proposed technique in Eq (4) 

 
𝜕𝑚𝑓(𝑥,𝑡)

𝜕𝑡𝑚 − 𝑓∗(𝑥, 𝑡) = 𝑝 [
𝜕𝑚𝑓

𝜕𝑡𝑚 −  𝑐𝐷𝑡
𝛼(𝑓) − 𝐿(𝑓) − 𝑅(𝑓) − 𝑁(𝑓)]. 

To perturb Eq (11), put 𝑚 = 1 for the case of 0 < 𝛼 < 1 and assume that 

  𝑓 = 𝑢0 + 𝑝1𝑢1 + 𝑝2𝑢2 + 𝑝3𝑢3 + 𝑝4𝑢4 + ⋯ 

𝜕

𝜕𝑡
(𝑢0 + 𝑝1𝑢1 + ⋯ ) − 𝑓∗(𝑥, 𝑡) = 𝑝 [

𝜕

𝜕𝑡
(𝑢0 + 𝑝1𝑢1 + ⋯ ) −  𝑐𝐷𝑡

𝛼(𝑢0 + 𝑝1𝑢1 + ⋯ ) − 𝐿(𝑢0 + 𝑝1𝑢1 + ⋯ ) − 𝑅(𝑢0 +

𝑝1𝑢1 + ⋯ ) − 𝑁(𝑢0 + 𝑝1𝑢1 + ⋯ )],                            (5) 

where 𝑓∗(𝑥, 𝑡) is the forcing term and equating the coefficients of like powers of p, we get 

   𝑝0 :     
𝜕

𝜕𝑡
𝑢0(𝑥, 𝑡) = 𝑓∗(𝑥, 𝑡), 

 𝑝1:     
𝜕

𝜕𝑡
𝑢1 = [

𝜕

𝜕𝑡
𝑢0 −  𝑐𝐷𝑡

𝛼𝑢0 − 𝐿𝑢0 − 𝑅𝑢0 − 𝑁𝑢0], 

 𝑝2:     
𝜕

𝜕𝑡
𝑢2 = [

𝜕

𝜕𝑡
𝑢1 −  𝑐𝐷𝑡

𝛼𝑢1 − 𝐿𝑢1 − 𝑅𝑢1 − 𝑁𝑢1], 

   ⋮ 

 𝑝𝑘+1 :     
𝜕

𝜕𝑡
𝑢𝑘+1 = [

𝜕

𝜕𝑡
𝑢𝑘 −  𝑐𝐷𝑡

𝛼𝑢𝑘 − 𝐿𝑢𝑘 − 𝑅𝑢𝑘 − 𝑁𝑢𝑘] , 𝑘 ≥ 1.        (6)   
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As 𝑝 varies from 0 to 1, the solution changes from the initial value 𝑢0(𝑥, 𝑡) to the solution 𝑢(𝑥, 𝑡), in topology this 
variation is called deformation or homotopy. Here, consider the solution of Eq(5) in the form of power series in 𝑝 is defined 
as 

                                                       𝑢(𝑥, 𝑡) = ∑ 𝑢𝑘
∞
𝑘=0 𝑝𝑘.  

The approximate solution of Eq(1) can also be defined as: 

                                                       𝑢(𝑥, 𝑡) = lim
𝑝→1

𝑢 = ∑ 𝑢𝑘
∞
𝑘=0 .                                                  (7) 

4. Numerical Applications 
This section discusses the numerical applications of the proposed model and implements the HPM method to find out 

the approximate solution and graphical representation for the proposed fractional-order cancer equation [43, 44], by using 
the Maple 15 software. 

Example 1. Consider the time fractional-order equation of the clear killing ratio of the cancer cells. 

      𝑐𝐷𝑡
𝛼Ψ(𝑥, 𝑡) =

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) − 𝑡2Ψ(𝑥, 𝑡), 𝑡 > 0, 0 ≤ 𝑥 ≤ 1, 0 < 𝛼 ≤ 1.       () 

Subject to the initial condition 

                                              Ψ(𝑥, 0) = 𝑒𝑟𝑥.                                                             () 

Using definition 2 for fractional-order derivative, we obtained 

               
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
+

(1−𝛼)

𝛼
(Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) −

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) +
𝑡2

𝛼
Ψ(𝑥, 𝑡),               () 

now, when applying for the HPM, we get  

𝜕𝑚Ψ(𝑥,𝑡)

𝜕𝑡𝑚 − Ψ∗(𝑥, 𝑡) = 𝑝 [
𝜕𝑚Ψ

𝜕𝑡𝑚 −
𝜕Ψ

𝜕𝑡
− (

1−𝛼

𝛼
) (Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
𝑡2

𝛼
Ψ(𝑥, 𝑡)],  

where Ψ∗(𝑥, 𝑡) is the forcing term, and for 𝑚 = 1, we get the following form 

𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= 𝑝 [− (

1−𝛼

𝛼
) [Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)] +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
𝑡2

𝛼
Ψ(𝑥, 𝑡)].  () 

To perturb Eq (11), Assuming that 

Ψ = ∑ 𝑝𝑛Ψ𝑛
∞
𝑛=0 ,  or  Ψ = Ψ0 + 𝑝1Ψ1 + 𝑝2Ψ2 + ⋯, 

hence putting Eq (12) into Eq(11) and equating the like power of 𝑝, we obtained the following recurrence relation. 

          Ψ0(𝑥, 𝑡) = ⅇ𝑟𝑥, 

𝜕

𝜕𝑡
Ψ𝑘+1(𝑥, 𝑡) = − (

1−𝛼

𝛼
) [Ψ𝑘(𝑥, 𝑡) − Ψ𝑘(𝑥, 0)] +

1

𝛼

𝜕2

𝜕𝑥2 Ψ𝑘(𝑥, 𝑡) −
𝑡2

𝛼
Ψ𝑘(𝑥, 𝑡). 𝑘 ≥ 0.  () 

Consequently, we have the following components of the solution. 

       Ψ0(𝑥, 𝑡) = ⅇ𝑟𝑥, 

 Ψ1(𝑥, 𝑡) =
ⅇ𝑟𝑥𝑟2𝑡

𝛼
−

ⅇ𝑟𝑥𝑡3

3𝛼
,    

Ψ2(𝑥, 𝑡) =
ⅇ𝑟𝑥𝑡2(18𝑟4 − 6𝑟2(3 + 2𝑡2 − 3𝛼) + 𝑡2(3 + 2𝑡2 − 3𝛼))

36𝛼2
, 
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                                      Ψ3(𝑥, 𝑡) = −
1

36𝛼3 ⅇ𝑟𝑥 (
2𝑡9

9
+

3

5
𝑡5(10𝑟4 + 11𝑟2(−1 + 𝛼) + (−1 + 𝛼)2) − 6𝑟2𝑡3(−1 + 𝑟2 +

𝛼)2 −
1

7
𝑡7(−5 + 14𝑟2 + 5𝛼)), 

                                 Ψ4(𝑥, 𝑡) =
1

136080𝛼4 ⅇ𝑟𝑥𝑡4 (70𝑡8 − 6𝑡6(140𝑟2 + 59(−1 + 𝛼)) + 27𝑡4(140𝑟4 + 163𝑟2(−1 + 𝛼) +

                                                    23(−1 + 𝛼)2) + 5670𝑟2(−1 + 𝑟2 + 𝛼)3 − 378𝑡2(−1 + 𝑟2 + 𝛼)2(−1 + 20𝑟2 + 𝛼)). 

     ⋮ 

Hence, the solution of equations (8) and (9) can be expressed in the series expansion 

Ψ(𝑥, 𝑡) =
1

136080𝛼5 ⅇ𝑟𝑥 (−
14𝑡15

3
+

2

13
𝑡13(455𝑟2 + 212(−1 + 𝛼)) −

15

11
𝑡11(308𝑟4 + 373𝑟2(−1 + 𝛼) +

65(−1 + 𝛼)2) + 3780𝑡2(18𝑟4 − 6𝑟2(3 + 2𝑡2 − 3𝛼) + 𝑡2(3 + 2𝑡2 − 3𝛼))𝛼3 + 136080𝑟2𝑡𝛼4 − 45360𝑡3𝛼4 +
136080𝛼5 + 3𝑡9(420𝑟2 + 37(−1 + 𝛼))(−1 + 𝑟2 + 𝛼)2 + 1134𝑟2𝑡5(−1 + 𝑟2 + 𝛼)4 − 54𝑡7(−1 + 𝑟2 + 𝛼)3(−1 +

35𝑟2 + 𝛼) + 𝑡4𝛼 (70𝑡8 − 6𝑡6(140𝑟2 + 59(−1 + 𝛼)) + 27𝑡4(140𝑟4 + 163𝑟2(−1 + 𝛼) + 23(−1 + 𝛼)2) +

5670𝑟2(−1 + 𝑟2 + 𝛼)3 − 378𝑡2(−1 + 𝑟2 + 𝛼)2(−1 + 20𝑟2 + 𝛼)) − 3780𝛼2 (
2𝑡9

9
+

3

5
𝑡5(10𝑟4 + 11𝑟2(−1 + 𝛼) +

(−1 + 𝛼)2) − 6𝑟2𝑡3(−1 + 𝑟2 + 𝛼)2 −
1

7
𝑡7(−5 + 14𝑟2 + 5𝛼))) 

Moreover, the contour graphs and 3D graphs of the fifth iterative series expansion Ψ(𝑥, 𝑡) of example 1 are presented 
below.  

 

      (a). 𝛼 = 1     (b). 𝛼 = 0.9 
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 (c). 𝛼 = 0.8     (d). 𝛼 = 0.6 

Fig. 1. The 3D graph of the solution Ψ(𝑥, 𝑡) of the fractional order of cancer tumor model at 𝑟 = −1 for different values of fractional-order 𝛼.    

  

TABLE I.  NUMERICAL RESULT OF THE EXACT AND APPROXIMATE SOLUTIONS 

_________________________________________________________________ 

x                   Exact Solution             Approximate Solution          Error 

__________________________________________________________________ 
1.0e-01         0.951200634900000        0.951189788600000        1.08463E-05 

2.0e-01         0.860681926600000        0.860672112500000        9.81410E-06 

3.0e-01         0.778777212200000        0.778768332000000        8.88020E-06 
4.0e-01         0.704666761900000        0.704658726700000        8.03520E-06 

5.0e-01         0.637608853400000        0.637601582900000        7.27050E-06 

6.0e-01         0.576932348600000        0.576925770000000        6.57860E-06 
7.0e-01         0.522029976700000        0.522024024200000        5.95250E-06 

8.0e-01         0.472352256300000        0.472346870100000        5.38620E-06 

9.0e-01         0.427401995900000        0.427397122400000        4.87350E-06 
_________________________________________________________________ 

 

Example 2. Consider the time fractional equation of the clear killing ratio of the cancer cells 

       𝐷𝑡
𝛼Ψ(𝑥, 𝑡) =

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝑥2 Ψ(𝑥, 𝑡),     𝑡 > 0,   0 ≤ 𝑥 ≤ 1,    0 < 𝛼 ≤ 1.           () 

Subject to the initial condition  

                                      Ψ(𝑥, 0) =
1

𝑥
+ 𝑥2.                                                                        () 

Using definition 2 for fractional-order derivative, we obtained 

                  
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
+

(1−𝛼)

𝛼
(Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) −

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) +
2

𝛼𝑥2 Ψ(𝑥, 𝑡),                          

now applying for the HPM, we get  

𝜕𝑚Ψ(𝑥,𝑡)

𝜕𝑡𝑚 − Ψ∗(𝑥, 𝑡) = 𝑝 [
𝜕𝑚Ψ

𝜕𝑡𝑚 −
𝜕Ψ

𝜕𝑡
− (

1−𝛼

𝛼
) (Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝛼𝑥2 Ψ(𝑥, 𝑡)],   

where Ψ∗(𝑥, 𝑡) is the forcing term, and for 𝑚 = 1, we get the following form 

 
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= 𝑝 [− (

1−𝛼

𝛼
) [Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)] +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝛼𝑥2 Ψ(𝑥, 𝑡)].                   ()          
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To perturb the above equation, Assuming that 

       Ψ = ∑ 𝑝𝑛Ψ𝑛
∞
𝑛=0 ,  Ψ = Ψ0 + 𝑝1Ψ1 + 𝑝2Ψ2 + ⋯,                                         ()                         

hence putting Eq (16) into Eq(15) and equating the like power of 𝑝, we obtained the following recurrence relation. 

   Ψ0(𝑥, 𝑡) = ⅇ𝑟𝑥, 

    
𝜕

𝜕𝑡
Ψ𝑘+1(𝑥, 𝑡) = − (

1−𝛼

𝛼
) [Ψ𝑘(𝑥, 𝑡) − Ψ𝑘(𝑥, 0)] +

1

𝛼

𝜕2

𝜕𝑥2 Ψ𝑘(𝑥, 𝑡) −
2

𝛼𝑥2 Ψ𝑘(𝑥, 𝑡). 𝑘 ≥ 0.  () 

Consequently, we have the following components of the solution. 

     Ψ0(𝑥, 𝑡) =
1

𝑥
+ 𝑥2, 

        Ψ1(𝑥, 𝑡) =
𝑡(2+

2

𝑥3)

𝛼
−

2𝑡(
1

𝑥
+𝑥2)

𝑥2𝛼
, 

                  Ψ2(𝑥, 𝑡) = 0, 

                   Ψ3(𝑥, 𝑡) = 0. 

Hence the series solution of equations (13) and (14) would be 

     Ψ(𝑥, 𝑡) =
1

𝑥
+ 𝑥2. 

 

Fig. 2. Graph of the solution Ψ(𝑥, 𝑡) of fractional order cancer tumor model at 𝛼 = 1 at 𝑟 = −1. 

 

Example 3. Consider the nonlinear time-fractional equation of the clear killing ratio of the cancer cells 

         𝐷𝑡
𝛼Ψ(𝑥, 𝑡) =

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝑥 

𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) − Ψ2(𝑥, 𝑡), 0 < 𝛼 ≤ 1, 𝑡 > 0, 0 ≤ 𝑥 ≤ 1.              ()                                 

Subject to the initial condition:  

                  Ψ(𝑥, 0) = 𝑥𝑝,      𝑝 > 0.                                            () 

Using definition 2 for fractional-order derivative, we obtained 



 

 

8 Shahzadi et al, Global Journal of Sciences, 1(2), 2024, 1-11 

            
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
+

(1−𝛼)

𝛼
(Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) −

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝛼𝑥 

𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) −

1

𝛼
Ψ2(𝑥, 𝑡),                          

now applying the HPM, we get  

𝜕𝑚Ψ(𝑥,𝑡)

𝜕𝑡𝑚 − Ψ∗(𝑥, 𝑡) = 𝑝 [
𝜕𝑚Ψ

𝜕𝑡𝑚 −
𝜕Ψ

𝜕𝑡
− (

1−𝛼

𝛼
) (Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)) +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝛼𝑥 

𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) −

1

𝛼
Ψ2(𝑥, 𝑡)],   

where Ψ∗(𝑥, 𝑡) is the forcing term, and for 𝑚 = 1, we get the following form 

 
𝜕Ψ(𝑥,𝑡)

𝜕𝑡
= 𝑝 [− (

1−𝛼

𝛼
) [Ψ(𝑥, 𝑡) − Ψ(𝑥, 0)] +

1

𝛼

𝜕2

𝜕𝑥2 Ψ(𝑥, 𝑡) −
2

𝛼𝑥 

𝜕

𝜕𝑥
Ψ(𝑥, 𝑡) −

1

𝛼
Ψ2(𝑥, 𝑡)].        ()          

To perturb the above equation, Assuming that 

  Ψ = ∑ 𝑝𝑛Ψ𝑛
∞
𝑛=0 ,  Ψ = Ψ0 + 𝑝1Ψ1 + 𝑝2Ψ2 + ⋯                                        ()                         

hence putting Eq (21) into Eq(20) and equating the like power of 𝑝, we obtained the following recurrence relation. 

   Ψ0(𝑥, 𝑡) = 𝑥𝑝, 

   Ψ1(𝑥, 𝑡) =
𝑡𝑥−2+𝑝(−3𝑝+𝑝2−𝑥2+𝑝)

𝛼
, 

                Ψ2(𝑥, 𝑡) = −
1

6𝛼3 𝑡2𝑥−4+𝑝 (−6𝑝3(2𝑡𝑥𝑝 − 5𝛼) + 𝑝4(2𝑡𝑥𝑝 − 3𝛼) + 𝑝2(−2𝑡𝑥𝑝(−9 + 2𝑥2+𝑝) −

                                          3(31 − 4𝑥2+𝑝 + 𝑥2(−1 + 𝛼))𝛼) + 3𝑝(4𝑡𝑥2+2𝑝 + 3(10 − 2𝑥2+𝑝 + 𝑥2(−1 + 𝛼))𝛼) +

𝑥4+𝑝(2𝑡𝑥2𝑝 + 3(−1 + 𝛼)𝛼)), 

                           Ψ3(𝑥, 𝑡) =
1

6𝛼4 𝑥−6+𝑝 (
1

3
𝑡6𝑥2+𝑝(3𝑝 − 𝑝2 + 𝑥2+𝑝)2 −

1

2
𝑡4𝑥𝑝 (−42𝑝5 + 4𝑝6 − 2𝑝𝑥2+𝑝(−18 + 2𝑥2+𝑝 −

                                                3𝑥2(−1 + 𝛼)) + 6𝑝3(−47 + 14𝑥2+𝑝 − 𝑥2(−1 + 𝛼)) + 𝑝4(164 − 18𝑥2+𝑝 + 𝑥2(−1 + 𝛼)) +

                                     𝑝2(180 − 102𝑥2+𝑝 + 16𝑥4+2𝑝 + 9𝑥2(−1 + 𝛼) − 2𝑥4+𝑝(−1 + 𝛼)) + 𝑥6+2𝑝(−1 + 𝛼)) +

                                           
3

5
𝑡5𝑥2 (10𝑝3 − 𝑝4 + 𝑝2(−31 + 4𝑥2+𝑝 − 𝑥2(−1 + 𝛼)) + 3𝑝(10 − 2𝑥2+𝑝 + 𝑥2(−1 + 𝛼)) +

                               𝑥4+𝑝(−1 + 𝛼)) 𝛼 + 𝑡3(−19𝑝5 + 𝑝6 + 𝑝3(−509 + 64𝑥2+𝑝 − 18𝑥2(−1 + 𝛼)) +

                                       𝑝4(141 − 16𝑥2+𝑝 + 2𝑥2(−1 + 𝛼)) +  𝑝(−600 + 36𝑥2+𝑝 − 48𝑥2(−1 + 𝛼) + 8𝑥4+𝑝(−1 + 𝛼) −
                               3𝑥4(−1 + 𝛼)2) + 𝑝2(890 − 84𝑥2+𝑝 + 52𝑥2(−1 + 𝛼) − 8𝑥4+𝑝(−1 + 𝛼) + 𝑥4(−1 + 𝛼)2) −

𝑥6+𝑝(−1 + 𝛼)2)𝛼). 

Hence the series expansion is 

 Ψ(𝑥, 𝑡) = 𝑥𝑝 +
𝑡𝑥−2+𝑝(−3𝑝+𝑝2−𝑥2+𝑝)

𝛼
+

1

6𝛼4 𝑥−6+𝑝 (
1

3
𝑡6𝑥2+𝑝(3𝑝 − 𝑝2 + 𝑥2+𝑝)2 −

1

2
𝑡4𝑥𝑝 (−42𝑝5 + 4𝑝6 −

2𝑝𝑥2+𝑝(−18 + 2𝑥2+𝑝 − 3𝑥2(−1 + 𝛼)) + 6𝑝3(−47 + 14𝑥2+𝑝 − 𝑥2(−1 + 𝛼)) + 𝑝4(164 − 18𝑥2+𝑝 + 𝑥2(−1 + 𝛼)) +

𝑝2(180 − 102𝑥2+𝑝 + 16𝑥4+2𝑝 + 9𝑥2(−1 + 𝛼) − 2𝑥4+𝑝(−1 + 𝛼)) + 𝑥6+2𝑝(−1 + 𝛼)) +
3

5
𝑡5𝑥2 (10𝑝3 − 𝑝4 +

𝑝2(−31 + 4𝑥2+𝑝 − 𝑥2(−1 + 𝛼)) + 3𝑝(10 − 2𝑥2+𝑝 + 𝑥2(−1 + 𝛼)) + 𝑥4+𝑝(−1 + 𝛼)) 𝛼 + 𝑡3(−19𝑝5 + 𝑝6 +

𝑝3(−509 + 64𝑥2+𝑝 − 18𝑥2(−1 + 𝛼)) + 𝑝4(141 − 16𝑥2+𝑝 + 2𝑥2(−1 + 𝛼)) + 𝑝(−600 + 36𝑥2+𝑝 − 48𝑥2(−1 +
𝛼) + 8𝑥4+𝑝(−1 + 𝛼) − 3𝑥4(−1 + 𝛼)2) + 𝑝2(890 − 84𝑥2+𝑝 + 52𝑥2(−1 + 𝛼) − 8𝑥4+𝑝(−1 + 𝛼) + 𝑥4(−1 + 𝛼)2) −

𝑥6+𝑝(−1 + 𝛼)2)𝛼) −
1

180𝛼5 𝑥−8+𝑝(
10

9
𝑡9𝑥4+𝑝(3𝑝 − 𝑝2 + 𝑥2+𝑝)2 −

25

7
𝑡7𝑥2+𝑝 + ⋯. 

Moreover, the contour graphs and 3D graphs of the fifth iterative series expansion Ψ(𝑥, 𝑡) of example 3 are presented 
below. 
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   (a). 𝛼 = 0.5      (b). 𝛼 = 0.95 

 

   (c). 𝛼 = 0.85      (d). 𝛼 = 0.75 

Fig. 3. The 3D graph of the solution Ψ(𝑥, 𝑡) of the fractional order cancer tumor model at 𝑝 = 1.2, 𝑟 = −1 for different values of 𝛼. 

5. Discussion 

This section presents some graphical solutions of the proposed fractional order cancer model solved by the HPM method. 
In Figure 1, the 3D graphs are plotted for example 1 for the solution Ψ(𝑥, 𝑡) of fractional order cancer tumor model at 𝑟 =
−1 for different values of fractional-order 𝛼 = 0.6, 0.8, 0.9, and 𝛼 = 1, to examine the effects of 𝛼 on the tumor cells and 
also the numerical results in table 1 show excellent agreement with the exact solution. Figure 2 represents the 3D plot for 
example 2 which coincides with the graph obtained in [34]. It shows that the concentricity of cancer tumor cells reduces over 
time and finally approaches zero. Figure 3 is plotted for example 3, which is the graphical representation for different values 
of 𝛼 = 0.5, 0.75, 0.85, 0.95, 𝑝 = 1.2, and  𝑟 = −1. In all these cases, examined that with increasing time the concentricity 
of the cancer cells decreases and finally approaches zero.  

6. Conclusion 

This article analyzed the number of tumor cells as a function of fractional-order derivative and implemented the HPM 
with Laplace transformation as it provides a very powerful and efficient approximate solution for the fractional-order cancer 
models. The result we achieved in terms of series which is easy to deal with. The 3D Graphical representation and numerical 
error in Table 1 also supported our numerical results. Moreover, the outcome based on transformation indicates that this 
method is simple, efficient, and highly powerful, and this transformation can be extended to other types of fractional higher-
order physical and biological models. 
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