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Abstract

The main aim of this manuscript is to investigate a new form of Hermite-
Hadamard inequalities via y-Riemann-Liouville fractional integrals for preinvex
functions. By em-ploying this approach, we construct a new fractional integral
identity that correlates with preinvex functions. In addition, based on this newly
derived fractional identity, some new estimation of fractional Hermite-Hadamard
type inequality involving m-preinvex via y-Riemann-Liouville fractional sense is
investigated. Further, we pointed out some appli-cations for special means.
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1 Introduction

Convex functions have a long and illustrious history. The history of convexity theory can
be traced all the way back to the end of the nineteenth century. Convex theory provides
us with appropriate guidelines and techniques to focus on a broad range of problems in
applied sciences. It has been widely acknowledged in recent years that mathematical
inequalities have contributed to the development of various aspects of mathematics as well
as other scientific disciplines.

The term invex function first time examined by Hanson [1]. Mond and Weir (2]
explored the notion of preinvexity. The analysis of the preinvex and invex theory utilizing
the bifunction by Mond and Ben-Israel [3] can be viewed as a significant contribution to
the optimization field.

The aim and novelty of this work are to introduce a new variant of H-H type integral
inequality via preinvexity in the frame of ¥ — RLF IO. Further, we are to construct some
refinements of H-H type integral inequality via ¥-RLFIO..

2 Preliminaries

In this section, we recall some basic definitions and results required for this manuscript.



Definition 2.1 ([]). X C R" is inver w.r.t Q(.,.), if
b1 =+ pQ(bg, bl) e X,
¥ by,be € X and p € [0, 1].

Definition 2.2 ([5]). Assume that  : X x X x (0,1] - R™ and X CR"™. Then X is m—invex
w.r.t. Q, if
mby + EQ(by,ba, m) € X

holds ¥ bq,b2 € X, m € (0,1] and p € [0,1].

Example 2.1 ([5]). Assume that m = %, X = [5F,0) (0, 5] and

mcos(bg — bl) Zf bl S (0, %], bg S (O, g],
—mcos(hy — p1) if b1 € [F,0),bo € [FF,0);
mecos(by) if b1 € (0,F],ba € [FF,0);

Q(bg,bl,m) = ]
—mcos(h1) ifb1 €[-F,0),b2 € (0, 5]

Then, X is an m—invex set but not convex V p € [0, 1].

Definition 2.3 ([2]). Assume that Q: X x X = R"™ and X CR". Then F : X — R is preinvex
w.r.t Q if

F (ba + 2 (b1,b2)) < p Fb1) + (1 —gp) F(b2) , Wby, b € X, pe€[0,1].

Definition 2.4. [6] Assume that Q : X x X x (0,1] = R” and X CR". Then F : X — R is
generalized m-preinvex w.r.t.  if

F(mbg + pQb1,b9,m)) < pF (01) +m (1 — ) F (b2), (2.1)
holds for every by,bs € X, m € (0,1] and p € [0,1].

Condition C: Assume that X C R is an open invex subset w.r.t. : X x X — R. We say
that the function ( satisfied the condition C, if for any by,bs € X and p € [0, 1],

Q01,01 + 9 Q(b2,01)) = —p Q(ba,01)
Q (2,01 +p Q(b2,01)) = (1 —9p) Q(b2,b1).

For any by,by € X, g1, p2 € [0, 1], then according to the above equations, we have

Qb1+ o2 Q(02,01), b1 +p1 Q(b2,01)) = (92 — 1) 2 (b2,b1).

This Condition is very important in the optimization and creation of the theory of inequal-
ities (see [7, [§]).

The following extended Condition C in the frame of m-preinvexity was also discussed by Du
et.al in [9].

Extended Condition C: Assume that X C R an open invex subset w.r.t. € : X x X x
(0,1] — R. We say that the function 2 satisfied the Extended Condition C, if for any by,bs € X
p € [0,1], we have

Q (b2, mba +p Q(b1,02,m),m) = —pQ(b1,ba,m)

Q(b17mb2+p Q(bl,bg,m),m) (1—@) Q(bl,bg,m)
Q(bl,bg,m) = 7Q(b2,b1,m).
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Theorem 2.1. [10] Assume that p > 1 and %—F% = 1. Assume thats U1, Vs : [x1, 23] — R are
such that |U1|P and |V2|? are integrable on [x1,x2]. Then

1 1 1 1 1
/O |f1(x)f2(x)|dx§(/0 |]-'1(x)|pdz> (/0 |]-"2(x)|qd:17> .

Many mathematicians with the development of fractional calculus have defined many frac-
tional derivative and integral operators to find solutions to real-world problems. Some of them
are as follows.

Here, we recall the ¥ as follows:

Definition 2.5. [I1] Let (b1,b2)(—00 < by < by < 00) be an interval of the real line R and
a > 0. Also let y(w) be an increasing and positive monotone function on (b1,bs], having a
continuous derwative 1 (w) on (b1,b2]). The left and right-sided 1-R-L fractional integrals of
a function F with respect to an other function ¢ on (b1,bs2). are defined by

() = g [ 0000 — v Fd
2
LT = g [0 ) — v Fds

respectively.

3 Hermite-Hadamard Inequality via ¥-Riemann-Liouville
Fractional Integral Operator

The main goal of this portion is to provide a new sort of the H-H-type inequality for a m-
preinvex function via W-RLFIO.

Theorem 3.1. Let I C R be an open and non-empty m-inver subset w.r.t. Q : 1 x 1 — R
and by1,by € T with mby < mby + Q (b2,by,m). If F : [mby,mby + Q (ba,b1,m)] = R is a m-
preinvex function and F € L[mby,mby + Q (be,b1,m)] and Q satisfies extended condition C.
Also suppose W(w) is an increasing and positive function on (mby, mby + Q (be,b1, m), having a
continous drivative W(w) on (mby,mby + Q (ba,b1,m) and o € (0,1), then

1
F(mby + §Q(b2, b1,m))
F(a + 1) ) -1

S g 5 PO+ 26,1,0)

+ [Ig:_w(mb1+9(b2,|717m))_ (]:O’l/))wil(mbl)]
Proof. Since F is m-preinvex function on [mby, mby + € (ba, b1, m)], we can write
F(mw) + F(z)
—
Using w = mby + (1 — 0)Q2(b2,b1, m) and z = mby + 6Q(ba, b1, m) inwe have

1
F(mw + §Q(z, w,m)) <

1
.F(mlh + (1 — 5)Q(b2, bl,m) + iﬂ(mbl + (SQ(bg, bl,m),mln + (1 — 5)Q(b2, bl,m)))

< ]:(mbl + (1 — 5)Q(b2, bl, m)) + ]:(mbl + 6Q(b27 bl, m)
— 2 .

(3.2)
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Applying extended Condition C' in [3:2] we have

1
F(mby + §Q(b2, b1, m))

L Flmby + (1=5)0s, bl,m;) + F(mby + 0Q(b2,01,m)) (3.3)

Multiplying both sides of the above inequality (3.3) by §%~! then integrating the resulting
inequality with respect to & over [0, 1], we obtain

2 1
a]:(mbl + 59(')2, bl,m))

1 1
< / 5L F(mby + (1 — 6)Q(ba, by, m))do +/ 5L F(mby + 6Q(ba, b1, m))do.
0 0

Next

MNa+1 a: — a: —
S LS s (PO~ 01+ o) 1,1 (P00 1)

a wil(mbl—‘rﬂa(bz,bl,m) a1 ,
= MW[/UJI(W” (mby + Q(b2,b1,m) — (1) (Fop) ()" (n)dp
P (mb14+Q% (b2,b1,m)
Lo ((00) — mba)*~" (Fous) () ()]
1 1
= g / (Sa_l]:(mbl + (1 — (S)Q(bg, bl,m))dé +/ 5(1—1]:(mb1 + (SQ(bQ, bl,m))dd (34)
0 0

From the inequalities [3.9] and we get

1
f(mbl =+ §Q(b2, bl, m))

1—‘(a + 1) (6% —
< 0 (g by o) oGy (FOUNY ™ (mby 4 Qoo by, m))]

+ [Ii:—z/)(mb1+g(b2,|;l7m))— (]:01/))7?71 (mbl)]

and the first inequality is proved.
For the proof of the second inequality, we have

f(mbl + 6Q(b2, bl,m)) = ]-'(mbl + Q(bg, b17m> + (1 — 5)Q(mb17mb1 + 6Q<b2, bl,m)))
< F(mby + Q(ba, by, m) + (1 — 6)F(mbr). (3.5)

and

f(mbl + (1 — 5>Q(b2, bl,m)) = ]:(mbl + Q(bg, bl,m) + 6Q(mb1,mb1 + Q(bz, bl, m)))
< (1 = 8)F(mby + Qba, by, m)) + 6F (mbs). (3.6)

From the inequalities [3.5 and [3.6] we get

F(mby + Q(ba, by, m)) + F(mby + (1 — 6)Q(ba, by, m)) + 6F (mby))
< F(mby) + F(mby + Q(ba, by, m)). (3.7)

110



Then, multiplying both sides of the above inequality (3.7) by §*~! and integrating the resulting
inequality with respect to § over [0, 1], we obtain

1 1
/ 51 F(mby +5Q(b2,b1,m))d5+/ 00T F (mby + (1= 6)ba, by, m))dd
0 0

<

F(mb1) + F(mby + Qba, b1, m)
. .

From the inequalities [3.4] and we get

F(OL + 1) ) —1
B0 (3, by ) (b= (FOVIET (M1 002,51, m))
L0 by 4020 1 ) - (FOV)Y ™ (mb)]
< ]:(mbl) =+ f(mbl =+ Q(bg, bl, m)) < ]:(mbl) + ./—"(bg)
- «Q - 2

So, the proof of this theorem is completed. O

4 Generalization of H-H-Type Inequality via W-Riemann-
Liouville Fractional Integral Operator

Lemma 4.1. Let I C R be an open and non-empty m-invex subset w.r.t. Q: I x I - R
and by, b € T with mby < mby + Q (ba, b1, m). Suppose that ¥ : I — R be a differentiable function.
If ¥’ is m-preinve and O’ € L [mby, mby + Q (b2, by, m)]. Also suppose ¥(w) is an

increasing and positive function on (mby, mby +Q (b, b1, m), having a continous drivative \Il(w)/
on (mby, mby + € (bg, b1, m) and a € (0, 1), then

Flmby) + Flmby + 902, 00m) Tt 1) o i o6

« B 2Qa(b2a b17/rn) T (mbu)¥
+ Ig:—w(mbﬁa(m,bl,m))* (Foy)y™ (mby)]
1 w—l(mb1+9a(b27bl,m) 7 /
200z h1m) /wlmbl) (1) = mb1)® = (mby + Qoa,51,m) = ()" ](F 00) ()8 (o)

o Q(bQ, bl,m)

. /0 (1= 6) — 6°)F (mby + (1 — 6)Q(bs, by, m))do.

where o € (0,1], ¢ € [0, 1].

Theorem 4.1. Let I C R be an open and non-empty m-inver subset w.r.t. Q : 1 x 1 — R
and by,by € T with mby < mby + Q(ba,b1,m). Suppose that ¥ : I — R be a differentiable
function. If V' is m-preinve and V' € L[mby,mby + Q (ba,b1,m)]. Also suppose ¥(w) is an
increasing and positive function on (mby, mby +Q (ba, b1, m), having a continous drivative \I!(w)'
on (mby,mby + Q (ba,b1,m) and o € (0,1), then

]:(mbl) —|—]:(mb1 —|—Q(b2,b1,m)) F(a+1)

[I;Zf/{(mbl), (Foy)yp~ ' (mby + Q(ba, b1, m))

2 B 2Q%(bg, by, m)
Qbs,b1,m) (| (mb)|” + [F/(b2)|" «
T HIwﬁ(mlerQ(bmth))_(]:Ow)(mbl)} : 2(ap + 1)% ( 2 ’

where p~t + ¢ 1 =1,¢>1,a € (0,1].
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Proof. By using Lemma [4.1] we get

‘]—'(mbl)—l—]—'(mb;—l—ﬁ(bg,bl,m)) B F((?;bll) )[[ sy~ (Fo) ™ (mby + Qba, b1, m))

+ (11 1€(mb1+§2(b2 by,my)— (F0P) (mb1)]

b27b17 / ‘504 _ ||_F/(mb1 +6Q(b27b17 ))|d5

By applying Hoélder inequality, we get

f(mbl) +f(mb1 —I-Q(bz,bhm)) B F(a—|—1) ) _1
‘ 2 5005 (b by, 1) L mon) - (FOVIET (b1 + Q2,51 m))

+ {15 P (mby+ Qb1 ,m)) ~ (FOY) (M1)]

< 802,01,m) bz’bl’ (/ 5 — pd6>1 (/01|JT'(mb1+59(b2,b1,m))|‘1d5)é
Sleeml( [a- “Pda);’( / 1((1—6)|f’(mb1)l"+6f’(bz)lq));
)

<b2,b1,m>% | F7 (mb1)|” + | F (b2)|?
- 2(ap+1) 2

This completes the proof. O

5 Application to special means:

We recall the following means for two real numbers by, bo, by # bs.

I)l—‘rbg

Ab1,b2) = b2 €

2
H(b1,52) = 5——b1,%2 € R\{0},

b1 bo

by — b1

L(b1,b2) = m’ |b1| # |ba|, biba € R, biba # 0,

L (bl I?Q): M i ’I”LEZ\{—l 0} |71 bQER b17é|72.
n ) (n+1)(b2_b1) ) ) ) ) )

Proposition 5.1. Let mby, mby + Q(ba, b1, m) € R, mby < mby + Q(ba, b1, m). Then

(n=1)g _ | (n—1)q q
| Amb, (mby + Db, by, m))™) — L2 (b, (mby + Qog, by, m))| < 2022 m) (mhy 7~ = b
20p+1)r 2
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Proof. Applying Theorem [4.1] with F(w) = w™, ¥(w) = w,a = 1. Then we compute the result
easily. O

Proposition 5.2. Let mby, mby + Q(ba, b1, m) € R, mby < mby + Q(ba,b1,m). Then

1

b b q

|A(€mb1 emb1+ﬂ(b2,b1,m)) _L(embl emb1+ﬂ(b2,b1,m))| < Q(bg,bl,’ﬂll) <6 te 2(1) )
2(p+1)7 2

Proof. Applying Theorem with F(w) = e, ¥(w) = w,a — 1. Then we compute the result
easily. O

Proposition 5.3. Let mby, mby + Q(ba, by, m) € R, mby < mby + Q(ba,b1,m). Then

1 -1 Q(bg,bl,m) 1 1 1
’H (mb1,mb1+Q(b2,b1,m))—L (mbl,mbl—l—Q(bg,bl,m))’ < W 5 bqu—i_@ .

Proof. Applying Theorem with F(w) = 1, ¥(w) = w,a = 1. Then we compute the result

w O
easily.

6 Conclusions
Fractional calculus has sparked the interest of multiple authors as well as scholars
from a wide range of fields. Convexity theory allows us to create new, innovative
numerical model frameworks that may be used to tackle a wide range of problems in
the pure and applied sciences. Thus, convex analysis and its associated inequalities are
growing in academic attention and appeal due to several advancements, modifications, and
applications.
In this work:
(1) First, we investigated a new sort of H-H inequality via W¥-RLFIO with some remarks
and corollaries.

(2) We introduced a new lemma. Further, we discussed new refinement of H-H
inequality based on newly constructed lemma.

(3) We introduced mean type applications in the frame of the W-RLFIO .

This work contains intriguing methods and useful ideas that may be used to analyze
Raina functions. We may talk about the above inequalities in the context of quantum
calculus and interval analysis. One of the areas of research that is expanding the fastest is
integral inequality. The application of interval-valued analysis and other forms of
quantum calculus to integral inequalities should fascinate every scientist.
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