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Abstract

We present a mathematical framework for the infection of Neisseria gonorrhea in this article. Compared to

a number of earlier models in the literature, the new model is more comprehensive and covers a wide range

of concepts. The local and global stability, sensitivity analysis, of the model are examined. The results are

illustrated with algorithmic experiments. A computational analysis of the model is examined. highlighting

the impact of different values of parameters on the model’s dynamics and offering potential avenues for

further research.

In this article, we present a robust mathematical framework for modeling the infection dynamics of

Neisseria Gonorrhoea. Unlike earlier models in the literature, our approach is more comprehensive, integrating

a wide array of concepts related to the infection process. We conduct an in-depth analysis of both local

and global stability, along with a sensitivity analysis of the model parameters. The results are supported

by algorithmic experiments that illustrate the model’s behavior under varying conditions. Additionally,

we perform a thorough computational analysis, emphasizing how different parameter values influence the

model’s dynamics. This work not only enhances our understanding of gonorrhea transmission but also

identifies potential avenues for further research in this critical area of public health.
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1. Introduction

A type of bacteria known as Neisseria gonorrhoeae is the source of the sexually transmitted infection

gonorrhea. It is transferred from one individual to another through oral, anal, and vaginal sex. It is present

in the urethra, anus, vagina, and throat. Infections in newborns can result in eye infections. After ten days of

exposure to the germ, the symptoms manifest and then go away [1]. Although women frequently show no

symptoms at all, men and women who have lost their symptoms are nonetheless infected and contagious. If

one has an oral sex infection, they may have symptoms such as sore throat. The risk of gonorrhea spreading

to the throat during penis-mouth sex is higher than during mouth-vagina sex, which is rare [2].

Neisseria gonorrhoea, the bacteria that causes gonorrhea, is one of the most prevalent STIs in the

world and poses serious health risks to the general public. Despite advances in diagnostic tools, treatment,

and prevention strategies, the persistence and resurgence of gonorrhea highlight the need for innovative

approaches to control its spread (Centers for Disease Control and Prevention, 2021; World Health Organization,

2018) [3]. In males, gonorrhea can result in epididymitis, a painful testicular infection that, if ignored, can

occasionally result in infertility. If left untreated, gonorrhea can cause scarring inside the urethra, which

can make it difficult to urinate. It can also affect the prostate. An estimated 78 million new cases of

gonorrhea are detected annually; in the United States alone, there are an estimated 820,000 new cases each

year, and in 9963, the World Health Organization determined that Logos, Nigeria, had the highest rate of

gonorrhea worldwide (Ogunbanjo BO 1989 and Lorismith 2018). In the past, gonorrhea was identified in

Edinburg in 1792 by surgeon Benjamin Bell, who distinguished it from the contagious syphilis sickness

(Benedek, 200). It can affect the throat, the mucous membranes in the eyes, the mouth, the anus, and

the throat in addition to the reproductive track (Lorismith 2018).[4]. If the treated people had sexual

contact with an infected person, they could become reinfected. (CDC, 2016) [5]. Human gonorrhea

infections that are left untreated raise the risk of contracting or spreading HIV, which can result in AIDS

(Flaming et al., 1999). [6]. The risk of blindness, joint infections, and potentially fatal blood infections

in children who contract gonorrhea from an infected mother during birthing can be decreased by treating

gonorrhea infections in pregnant women as soon as they are identified. The emergence of antibiotic-resistant

strains of Neisseria gonorrhoeae further complicates control efforts, necessitating a deeper understanding of

transmission dynamics and the effectiveness of various interventions (Unemo et al., 2019) [7]. Mathematical

modeling has proven to be a valuable tool in epidemiology, offering insights into the dynamics of infectious

diseases and informing public health interventions (Keeling & Rohani, 2008),[8]. Models of gonorrhea
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transmission can help elucidate the potential impact of different control strategies, including the role of self-

protection behaviors, such as condom use, regular STI testing, and partner notification (Eames & Keeling,

2002; Garnett, 2002)[9]. Self-protection behaviors are critical in reducing the transmission of gonorrhea,

yet their effectiveness is influenced by a range of factors, including individual adherence, public health

policies, and the characteristics of the sexual network (Alirol et al., 2017)[10]. For instance, condom use

has been shown to reduce the risk of transmission significantly, but inconsistent use and behavioral factors

can diminish its overall impact (Holmes et al., 2004) [11]. According to (Semchenko EA, et al, 2018) [12],

the ameningococcal B vaccine Bersero, which has been authorized in the US since 2015, causes humans to

develop antibodies that fight Neisseria gonorrhoeae. Frequent STI testing and prompt treatment of infected

persons are also essential, but they rely on healthcare availability and the willingness of the individual

to seek testing (Katz et al., 2019)[13]. An investigation conducted by (Kermack & McKendrick, 1927).

examining the effects of self-defense practices in a mathematical model to investigate the dynamics of

gonorrhea transmission [14]. By incorporating various self-protection strategies into the model, we aim

to quantify their effects on the transmission of gonorrhea and identify the conditions under which these

strategies can effectively reduce the prevalence of the disease . This research contributes to ongoing efforts

to combat STIs by providing a theoretical framework that can inform public health policies and individual

decision-making understanding the interplay between self-protection behaviors and gonorrhea transmission

is essential for designing targeted interventions that can adapt to changing epidemiological patterns and

societal behaviors. The insights gained from this study have the potential to inform future public health

strategies aimed at curbing the spread of gonorrhea .

2. Model construction

Neisseria gonorrhoea can spread between individuals. To account for this, the S PEIT R model was 

developed, dividing the population into six epidemiological compartments. P(t) is the class of people who 

continue to take care of themselves and protect themselves from the sickness, while S (t) represents those 

who have not yet contracted the disease but have the potential to do so. E(t) denotes the class of exposed 

individuals, and I(t) displays the infected class that was ever infected by the Neisseria gonorrhoea bacterium. 

t, In the model, the class of recovered individuals is represented by R(t), whereas the treatment class is 

denoted by T (t). The following epidemic model is what we suggested:
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Figure 1: The Model’s flow chart



d
dt S = Λ − (µ + βI + η)S + ψ1R + ψ2E + τP

d
dt P = ηS − (µ + τ)P,

d
dt E = βIS − (µ + ρ + ψ2)E,

d
dt I = ρE − (µ + δ + ϕ)I,

d
dt T = ϕI − (µ + ν)T,

d
dt R = νT − (µ + ψ1)R

(1)

With initial conditions: S (0) > 0, P(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, I(0) ≥ (0), R(0) ≥ (0)). The parameters

are described in Table 1.
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Table 1: Description of Parameters and definition of State Variables

Parameters/Variables Descriptions/Definitions

S (t) At time t, the number of susceptible persons

P(t) Class of individuals who keep self protection at time t

E(t) Total number of people exposed to Neisseria gonorrhoea at time t

I(t) Number of people with Neisseria gonorrhoea infection at time t

T (t) Number of patients receiving treatment at time t

R(t) Number of people that have recovered at that moment t

Λ Recruitment rate to susceptible population

β The contact rate of those who are infected

η The rate of people transfer from S to P

γ The number of Gonorrhea patients who recovered

ψ1 Rate of recovered people moving back to susceptible

ρ Transfer rate of Gonorrhea exposed individuals into infected individuals

ψ2 Rate of exposed individuals moving back to susceptible

µ Natural death rate

ρ Transmission rate from E into I

δ Disease death rate

ϕ The transfer rate from infected class into treatment class

τ Individuals’ migration rate from susceptible class S (t) to protection class P

ν Rate of recovered individuals
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3. The Positive Invariant Region

N(t) = S (t) + P(t) + E(t) + I(t) + T (t) + R(t)

. Differentiate with respect t we have;

dN
dt
=

dS
dt
+

dP
dt
+

dE
dt
+

dI
dt
+

dT
R
.

By adding system (1) we get
dN
dt
= Λ − µN − δI (2)

By applying the following theorem, the positive invariant region can be found (Adedayo et al., 2023).

Theorem 3.1. The system of equations is feasible if, for all t ≥ (0), the solutions to (1) lie inside the invariant

region Ω.

Proof. Suppose that Ω = (S , P, E, I,T,R) ∈ ℜ6
+. With non-negative initial conditions, be any solution to the

system of equations (1). Next, we obtain from equation (2).

dN
dt
≤ Λ − µN(t)

by using the integrating factor to multiply via

eµt(
dN
dt
+ µN) ≤ Λeµt

After applying the product rule in reverse and integrating the two sides, we have;

d
dt

(Neµt) ≤ Λeµt

d
dt

(Neµt) ≤
Λ

µ
eµt +C (3)

Applying the initial conditions t = 0,N = N0 we obtain;

N0 ≤
Λ

µ
+C ⇒ (N0 −

Λ

µ
≤ C (4)

equation (3) implies that

dN
dt

(Neµt) −
Λ

µ
eµt ≤ C (5)
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When we compare (4) with (5), we have;

N(t) ≤
Λ

µ
+ (N0 −

Λ

µ
)e−µt (6)

The maximum number of people that the human population can support N(t) approaches ϵ = Λµ (i.e., ϵ → Λ
µ )

at t → 0 in equation (6).

Consequently, the region contains every feasible solution for the Model’s human population.

Ω = {(S , P, E, I,T,R) ∈ ℜ6
+ : S > 0, P > 0, E > 0, I > 0,T > 0,R > 0,N ≤

Λ

µ
} (7)

Consequently, in the domain Ω, system (1) is both mathematically and epidemiologically significant, and

the region Ω is positively-invariant. □

4. Positivity of the Solutions

Theorem 4.1. Let the initial solutions be {(S (0), P(0), E(0), I(0),T (0),R(0)) ≥ 0} ∈ Ω then the solutions

{S (t), P(t), E(t), I(t),T (t),R(t)} of the system (1) is positive ∀t ≥ 0.

Proof. From the first equation of (1), we have:

d
dt

S = Λ − (µ + βI + η)S + ψ1R + ψ2E + τP ≥ −(µ + η)S

d
dt

S (t) ≥ −(µ + η)S

Separate variables and integrate we have: ∫
dS
S
≥ −

∫
(µ + η)dt

By solving both the left and right hand sides we have :

ln S + C1 ≥ −µt − ηt + C2

whereC1 and C2 are the constants of integration.

Subtract C1 from both sides and combining the constants C1 and C2 into a single constant C gives i.e 

(C2 − C1 = C):

ln S ≥ −µt − ηt + C

ln S ≥ −(µ + η)t + C

87



Take exponential to both sides:

eln S ≥ e−(µ+η)t+C

S ≥ e−(µ+η)t.eC

Since eC is just another constant, we can denote it as B:

S (t) ≥ Be−(µ+η)t

Applying initial conditions t = 0 we have

S (0) ≥ Be−(µ+η)(0)

S (0) ≥ Be0

This implies that

S (0) ≥ B

Thus we conclude that

S (t) ≥ S (0)e−(µ+η)t > 0

From the second equation of (1), we have:

d
dt

P = ηS − (µ + τ)P ≥ −(µ + τ)P

d
dt

P ≥ −(µ + τ)P

separate variables and integrate
dP
P
≥ −(µ + τ)dt

∫
dP
P
≥ −

∫
(µ + τ)dt

where C2 −C1 = C,

Exponentiating both sides we have:

ln P + C1 ≥ −(µ + τ)t + C2 

ln P ≥ −(µ + τ)t + C2 − C1

ln P ≥ −(µ + τ)t + C

eln P ≥ e−(µ+τ)t+C
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P ≥ e−(µ+τ)t.eC

eC is constant we can useD = eC ,

P ≥ De−(µ+τ)t

Applying initial conditions t = 0 we have

P(0) ≥ De0 ⇒ p(0) ≥ D

P(t) ≥ P(0)e−(µ+τ)t ≥ 0

From the third equation of (1), we have:

d
dt

E = βIS − (µ + ρ + ψ2)E ≥ −(µ + ρ + ψ2)E

d
dt

E ≥ −(µ + ρ + ψ2)E

separate variables and integrate we have:

dE
E
≥ −(µ + ρ + ψ2)dt ⇒

∫
dE
E
≥ −

∫
(µ + ρ + ψ2)dt

∫
dE
E
≥ −

∫
(µ + ρ + ψ2)dt ⇒ ln E ≥ −(µ + ρ + ψ2)t +C

eln E ≥ e−(µ+ρ+ψ2)t+C

E ≥ e−(µ+ρ+ψ2)t.eC ,

E ≥ e−(µ+ρ+ψ2)t.eC ,

By substituting initial conditions t = 0 and equate eC by M we have:

E ≥ M,

Therefore E(t) ≥ P(0)e(µ+ρ+ψ2) ≥ 0, By using the similar procedure we can prove the remaining equations

of system (1) are also positive ,that as: I(t) ≥ (0), T (t) ≥ (0), R(t) ≥ (0). □
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5. Disease Free Equilibrium State

To find the model (1)’s disease free equilibrium, set

dS
dt
=

dP
dt
=

dE
dt
=

dI
dt
=

dT
dt
=

dR
dt
= 0

As E = I = T = 0, there is no sickness in this instance. Thus, the DFE of the model we have suggested is

provided by:

Equation first and second implies that; 
Λ − (µ + η)S + τP = 0

ηS − (µ + τ)P = 0
(8)

To solve the system of equations by equating terms, multiply first equation of (8) by(µ + τ) and second by τ

we get:

Λ(µ + τ) − (µ + τ)(µ + η)S + (µ + τ)τP = 0 (9)

τηS − τ(µ + τ)P = 0 (10)

Adding equations, (9) and (10) and calculate S 0 we have;

S 0 = Λ
µ + τ

(µ + η)(µ + τ) − τη
⇒

Λ(µ + τ)
µ(µ + τ + η)

(11)

Also for P second equation of (8) implies that:

ηS − (µ + τ)P = 0⇒ P0 =
ηS 0

(µ + τ)
(12)

Putting values of S 0 from equation (11) in equation (12) and simply further for P0 we have:

⇒ P0 =
Λη

µ(µ + τ + η)
(13)

Hence the disease free equilibrium E0 points are:

E0 =

(
Λ(µ + τ)

µ(µ + τ + η)
,

Λη

µ(µ + τ + η)
, 0, 0, 0, 0

)
. (14)
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6. Basic Reproduction Number (R0)

The average number of secondary infections that infected people cause during the course of their

infectiousness is called R0. When R0 > 1, the disease will spread throughout the community, meaning

that an infectious person will not perpetuate the disease and will not produce more than one secondary

infection.When dealing with a more complex epidemic, the next generation operator approach (van den

Driessche & Watmough, 2002)

can be used to calculate the R0. We can compute F and V using the system (1).

F =

βIS

0

 ,V =
 (µ + ρ + ψ2)E

−ρE + (µ + δ + ϕ)I

 , (15)

taking jacobian of matrices F and V we obtain the followings:

F∗ =

0 βS

0 0

 ,V∗ =
µ + ρ + ψ2 0

−ρ µ + δ + ϕ

 , (16)

inverse of V∗ is calculated as:

V∗−1 =

 1
µ+ρ+ψ2

0
ρ

(µ+ρ+ψ2)(µ+δ+ϕ
1

µ+δ+ϕ

 , (17)

From this point on, we will utilize the Next Generation matrix G = F∗V∗−1.

G =


ρβS 0

(µ+ρ+ψ2)(µ+δ+ϕ)
βS 0

µ+ρ+ϕ

0 0

 , (18)

Using |G − λI| = 0 as the characteristic equation of G, we can find the eigenvalues:

|G − λI| =


ρβS 0

(µ+ρ+ψ2)(µ+δ+ϕ) − λ
βS 0

µ+ρ+ϕ

0 0 − λ

 = 0, (19)

it is clear that λ2 = 0 and λ1 =
ρβS 0

(µ+ρ+ψ2)(µ+δ+ϕ is maximum eigenvalue, by putting the value of S 0 from (11)

we set λ1 = R0 is the basic reproduction number as:

R0 =
Λρβ(µ + τ)

µ(µ + ρ + ψ2)(µ + δ + ϕ)(µ + τ + η)
. (20)

Theorem 6.1. The disease-free equilibrium is locally asymptotically stable if R0 < 1 and unstable otherwise 

that is R0 > 1.
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Proof. To do the local stability analysis of the disease-free equilibrium, we will employ the Jacobean

stability technique. The system of equations at disease-free equilibrium has the following Jacobean matrix:

J =



−(µ + βI + η) τ ψ2 −βS 0 ψ1

η −(µ + τ) 0 0 0 0

βI 0 −(µ + ρ + ψ2) βS 0 0

0 0 ρ −(µ + δ + ϕ) 0 0

0 0 0 ϕ −(µ + ν) 0

0 0 0 0 ν −(µ + ψ1)


(21)

At DFE E0 the above metrics becomes:

J =



−(µ + η) τ ψ2 −βS 0 0 ψ1

η −(µ + τ) 0 0 0 0

0 0 −(µ + ρ + ψ2) βS 0 0 0

0 0 ρ −(µ + δ + ϕ) 0 0

0 0 0 ϕ −(µ + ν) 0

0 0 0 0 ν −(µ + ψ1)


(22)

Utilise row operation .−(µ + η)R2 + ηR1 we have

J =



−(µ + η) τ ψ2 −βS 0 0 ψ1

0 τη − (µ + τ)(µ + η ψ2η −βηS 0 0 ψ1η

0 0 −(µ + ρ + ψ2) βS 0 0 0

0 0 ρ −(µ + δ + ϕ) 0 0

0 0 0 ϕ −(µ + ν) 0

0 0 0 0 ν −(µ + ψ1)


(23)

From first column, we get λ1 = 0 the remaining matrix will be:

J =



τη − (µ + τ)(µ + η ψ2η −βηS 0 0 ψ1η

0 −(µ + ρ + ψ2) βS 0 0 0

0 ρ −(µ + δ + ϕ) 0 0

0 0 ϕ −(µ + ν) 0

0 0 0 ν −(µ + ψ1)


(24)
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Expand above by first column to obtain λ2 = τη − (µ + τ)(µ + η then:

J =



−(µ + ρ + ψ2) βS 0 0 0

ρ −(µ + δ + ϕ) 0 0

0 ϕ −(µ + ν) 0

0 0 ν −(µ + ψ1)


(25)

By column fourth we have λ3 = −(µ + ψ1):

J =


−(µ + ρ + ψ2) βS 0 0

ρ −(µ + δ + ϕ) 0

0 ϕ −(µ + ν)

 (26)

again by third column we get λ4 = −(µ + ψ1),

J1 =

−(µ + ρ + ψ2) βS 0

ρ −(µ + δ + ϕ)

 (27)

The determinant must be larger than zero and the trace of matrix J1 must be smaller than zero in order

for the DFE to be regarded locally stable. This is the maximum number of individuals that can exist.

TraceJ1 = −(µ + ρ + ψ2) − (µ + δ + ϕ) < 0

TraceJ1 = −((µ + ρ + ψ2) + (µ + δ + ϕ)) < 0

And determinant.

Det(J1) = (µ + ρ + ψ2)(µ + δ + ϕ) − ρβS 0 > 0

(µ + ρ + ψ2)(µ + δ + ϕ) > ρβS 0

ρβS 0 < (µ + ρ + ψ2)(µ + δ + ϕ)

Divide both sides by (µ + ρ + ψ2)(µ + δ + ϕ), and substitute value of S 0 (11) we conclude:

Det(J1) =
ρβΛ(µ + τ)

µ(µ + ρ + ψ2)(µ + δ + ϕ)(µ + η)
= R0 < 1.

Hence by the Routh-Hurwitz criteria of stability the disease-free equilibrium point E0 is locally asymptotically

stable if R0 < 1 otherwise unstable. Thus, DFE is Locally Asymptotically Stable (LAS) if and only if R0 < 1.

The theorem’s epidemiological implication states that, if the initial size of the sub-populations falls under

the DFE’s basin of attraction, gonorrhea can be eradicated (control) from the population when R0 < 1.

□
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7. Global stability of disease free equilibrium points

The method of Castillo-Chavez et al. [15] is used to examine the global stability of DFE. Afterward, the

model system (1) can be expressed as follows:
dB
dt = F(B,Q)

dQ
dt = G(B, 0),G(B, 0) = 0

(28)

The number of uninfected compartments is denoted by B ∈ Rm, the number of infected compartments

is denoted by Q ∈ Rn, and the disease-free equilibrium point is represented by E0 = (B0, 0). The following

conditions (H1) and (H2) must be met in order to ensure the global asymptotic stability of DFE.

(H1) For dB
dt = F(B, 0), B0 is globally asymptotically stable (GAS),

(H2) G(B,Q) = XQ − Ĝ(B,Q), Ĝ(B,Q) ≥ 0 For (B,Q) ∈ Ω.

Since X’s off-diagonal elements are non-negative, X = A1(B, 0) is the Metzler Matrix, and Ω denotes the

region where the Gonorrhea model system (1) provides epidemiological significant information. Accordingly,

the following theorem holds if and only if the system satisfies H1 and (H2).

Theorem 7.1. For a system of equations with R0 < 1, the disease-free equilibrium is globally asymptotically

stable; for a system with R0 > 1, it is unstable.

Proof. One way to express the Gonorrhea model system (1) is as follows: B = (S , P,T,R) ∈ R4 and

E0 = ( Λ(µ+τ)
µ(µ+τ+η) ,

Λη
µ(µ+τ+η) , 0, 0, 0, 0) Now, we have:

dB
dt
=



Λ − (µ + βI + η)S + ψ1R + ψ2E + τP

ηS − (µ + τ)P

ϕI − (µ + ν)T

νT − (µ + ψ1)R


, (29)

We arrive at the disease-free equilibrium point at;

dB
dt
= F(B0, 0) =



Λ − (µ + η)S 0 + τP0

ηS 0 − (µ + τ)P0

0

0


, (30)
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implies that:

dB
dt
= F(B0, 0) =



Λ − (µ + η) Λ(µ+η)
µ(µ+η+τ) + τ

Λη
µ(µ+η+τ)

η
Λ(µ+η)
µ(µ+η+τ) − (µ + τ) Λη

µ(µ+τ+η)

0

0


, (31)

□

F(B0, 0) has a distinct point of equilibrium. B0 =
(
Λ(µ+τ)
µ(µ+τ+η) ,

Λη
µ(µ+τ+η) ,

)
., which has asymptotically global

stability. Thus, H1 holds.

For the second condition, (H2).

Ĝ(B,Q) =

−E(µ + ρ + ψ2) + BS 0I

Eδ − I(µ + δ + ϕ)

 (32)

Then we get,

X = A1(B0, 0) =

−(µ + ρ + ψ2 BS 0

ρ −(µ + δ + ϕ)

 (33)

The matrix X is clearly an M-marix now that its off diagonal components are non-negative.Thus, Ĝ(B,Q) =

XA −G(B,Q) implies

Ĝ(B,Q) =

−(µ + ρ + ψ2) BS 0

ρ −(µ + δ + ϕ)


E

I

 −
βIS − (µ + ρ + ψ2)E

ρE − (µ + δ + ϕ)I

 (34)

Ĝ(B,Q) =

−(µ + ρ + ψ2)E + βS 0I

δE − (µ + δ + ϕ)I

 +
−βIS + (µ + ρ + ψ2)E

−ρE + (µ + δ + ϕ)I

 (35)

=

βS 0 − βS

0

 =
β(S 0 − S )

0

 (36)

Since S 0 > S , B0 =
(
Λ(µ+τ)
µ(µ+τ+η) ,

Λη
µ(µ+τ+η)

)
≥ 1, and Ĝ(B,Q) ≥ 0 are globally asymptotically stable.
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8. Endemic Equilibrium Points

The endemic equilibrium points of our proposed model can be derive by putting all equations of system

(1) equal to zero, we have 

S ∗ = Λ+ψ1R∗+ψ2E∗+τP∗

µ+βI∗+η

P∗ = ηS ∗

µ+τ

E∗ = βI∗S ∗

µ+ρ+ψ2

I∗ = PE∗
µ+δ+ϕ

T ∗ = ϕI∗

µ+ν

R∗ = νT ∗
µ+ψ1

(37)

9. Global stability of endemic equilibrium points

The investigation of the endemic equilibrium point E∗ was made possible by computing its global

stability using the Lyapunov function that Vargas-De-León [16] devised. If dV
dt < 0, At the given point,

the Lyapunov function V(x) is considered to be globally asymptotically stable .

Theorem 9.1. For Model System (1), there exists a unique endemic equilibrium point E∗ for the gonorrhea

disease, which, in the case where R0 > 1, is globally asymptotically stable; otherwise, it is unstable.

Proof. Consider the Lyapunov function that is quadratic.

V(y1, ..., yn) =
n∑

i=1

1
2

[yi − y∗i ]2

For the model system (1), a positive definite function looks like this: in this example, the population of the

ith compartment is denoted by yi, and the endemic equilibrium point is yi.

F(S , P, E, I,R) =
6∑

i=1

1
2

[yi − y∗i ]2

The gonorrhea model system’s Lyapunov function is thus expressed as follows:

V(x) =
1
2

[(S − S ∗)(P − P∗)(E − E∗)(I − I∗)(T − T ∗)(R − R∗)]2 (38)
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It is evident that V : R6
+ → R is a differentiable and continuous function. Next, the function V(x) can be

differentiated with respect to time to obtain:

V(x)
dt
= [(S − S ∗)(P − P∗)(E − E∗)(I − I∗)(T − T ∗)(R − R∗)]

d
dt

[S + P + E + I + T + R]

V(x)
dt
= [S + P + E + I + T + R] − (S ∗ + P∗ + E∗ + I∗ + T ∗ + R∗)

d
dt

[S + P + E + I + T + R]. (39)

But,

(S + P + E + I + T + R) = Λ − µN − δI. (40)

And

Λ − µN − δI∗ = 0.

Λ − µ(S ∗ + P∗ + E∗ + I∗ + T ∗ + R∗) − δI∗ = 0.

(S ∗ + P∗ + E∗ + I∗ + T ∗ + R∗) =
Λ − δI∗

µ
(41)

Substitute (39) and (40) in (38) we have:

dV
dt
= [(S + P + E + I + T + R) −

(Λ − δI∗)
µ

][Λ − µN − δI]

dV
dt
= [N −

(Λ − δI∗)
µ

][Λ − µN − δI]

dV
dt
=

[
N −

(Λ − δI∗)
µ

] [
−µ(N +

Λ

µ
−
δI
µ

)
]

dV
dt
=

[
N(t) −

Λ

µ
+
δI∗

µ

] [
−µ(N(t) −

Λ

µ
+
δI
µ

)
]

dV
dt
= −µ

[
N(t) −

Λ

µ
+
δI∗

µ

] [
(N(t) −

Λ

µ
+
δI
µ

)
]

dV
dt
≤ −µ

[
N(t) −

Λ

µ

] [
(N(t) −

Λ

µ
)
]

That is
dV
dt
≤ −µ

[
N(t) −

Λ

µ

]2

< 0

As a result, it is evident that dV
dt < 0, indicating the asymptotic global stability of the Endemic Equilibrium

Point E∗.

□
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10. Sensitivity Analysis

The basic reproductive number R0 sensitivity analysis to the model parameters is very important for the

current study. It enables us to determine the most crucial factors that affect the spread and management of

disease. This section examines the sensitivity of many important parameters of our suggested Gonnerrhea

model (1).

This method’s goal is to investigate the model contained parameters’ significance in relation to R0. One

can use the formula devised by Chitnis et al. Here, we examine each parameter’s sensitivity for the system

(1). To do this, we must assess

χR0
ζ =

∂R0
∂ζ ×

ζ
R0
, where, ζ ∈ (β,Λ, µ, δ, ψ2, ρ, τ, ϕ, η)

1. For β, we have: χR0
β =

∂R0
∂β ×

β
R0
⇒ χR0

β = 1,

2. For Λ, we have: χR0
Λ
=

∂R0
∂Λ ×

Λ
R0
⇒ χR0

Λ
= 1,

3. For ρ, we have: χR0
ρ =

∂R0
∂ρ ×

ρ
R0
⇒ χR0

ρ =
(µ+δ+ϕ)(µ+τ+η)(η2+µψ2−ρµ)

µ(µ+ρ+ψ2) ,

4. For δ, we have: χR0
δ =

∂R0
∂δ ×

δ
R0
⇒ χR0

δ = −
δ(µ+τ+η)
µ(µ+δ+ϕ) ,

5. for Ψ2, we have: χR0
Ψ2
=

∂R0
∂Ψ2
×
Ψ2
R0
⇒ χR0

Ψ2
= −

ψ2(µ+τ+η)
µ(µ+δ+ϕ)(µ+ρ+Ψ2) ,

6. For τ, we have: χR0
τ =

∂R0
∂τ ×

τ
R0
⇒ χR0

τ =
(Λρβη)

[µ(µ+ρ+ψ2)(µ+δ+ϕ)(µ+τ+η)]2 ,

7. For η, we have: χR0
η =

∂R0
∂η ×

η
R0
⇒ χR0

η = −
η(µ+δ+ϕ)
µ(µ+τ+η) ,

8. For ϕ, we have: χR0
ϕ =

∂R0
∂ϕ ×

ϕ
R0
⇒ χR0

ϕ = −
ϕ(µ+τ+η)
µ(µ+δ+ϕ) .

9. For µ, we have:χR0
µ = −

µ
(
(δ+µ+ϕ)(η+µ+τ)+(η+µ+τ)(µ+ρ+ψ2)+(δ+µ+ϕ)(µ+ρ+ψ2)− (η+µ+τ)(δ+µ+ϕ)(µ+ρ+ψ2)

µ+τ

)
+(η+µ+τ)(δ+µ+ϕ)(µ+ρ+ψ2)

(η+µ+τ)(δ+µ+ϕ)(µ+ρ+ψ2) .

This analysis is summarized in the following Table 2.
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Table 2: Parametric sensitivity analysis of the model (2)

Parameter Description Sensitivity Indices

Λ Recruitment rate +1

β Transmission rate to Gonorrhea +1

ρ Transfer rate of Gonorrhea exposed individuals into infected individuals 0.6

µ Natural death rate -0.3

τ People’s moving rate from the protection class P to susceptible class S (t) -0.046

ψ2 Rate of exposed individuals moving back to susceptible -0.03

δ Disease death rate -0.5

ϕ The transfer rate from infected class into treatment class -0.4

η The rate of people transfer from S to P -0.78

Figure 2: A graph is provided regarding the parameters and the sensitivity indices of the Gonorrhea model Basic Reproduction 

number (R0).

.

The numerical values of the sensitivity indices for the model are listed in Table 2. The gonorrhea 

transmission model’s sensitivity analysis reveals that the most important parameters are the rate of new 

infections Λ and the transmission rate per contact β. This suggests that focusing interventions on these
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areas will have a major effect on disease control. On the other hand, a high negative relationship is seen

for parameters like η, which may be associated with partner change rates or antibiotic efficaciousness. This

suggests that lowering these rates can significantly reduce transmission. By comparison, ψ2 and τ have

negligible effects, suggesting that the most important parameters should get the majority of resources in

order to effectively restrict the spread of gonorrhea. The sensitivity analysis of the model was displayed in

Figure (2).

11. Simulations

Numerical simulations were performed in this section with the settings listed in Table 3. Importantly, the

parameter values displayed in Table 2 were derived from previously published works. On the other hand,

the remaining figures were calculated using information from the World Health Organization and other

scholars. Utilized in numerical simulations, the predictor-corrector technique is MATLAB-based. There are

four differential equation order values considered in this study.

Table 3: Parameters Values and References

Parameter Value Reference

Λ 0.008 [17]

β 2.0, 2.2, 2.4 Assumed

µ 0.000125 [18]

ν 0.5, 0.7, 0.9 [19]

τ 0.02 Assumed

ψ1 0.005 [20]

ψ2 0.006 [21]

ρ 0.004 Assumed

ϕ 0.4, 0.5, 0.7 Assumed

η 0.5, 0.7, 0.9 [22]

δ 0.044 [23]
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(a) Dynamics of Gonorrhea Susceptible individuals (b) Dynamics of Gonorrhea Protected individuals

(c) Dynamics of gonorrhea Exposed individuals (d) Dynamics of Gonorrhea Infected individuals
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(a) Dynamics Treated individuals (b) Dynamics of Recovered individuals

Figure 4: Variations in population dynamics for different values of parameters

Discussion

The population that is susceptible S is greatly impacted by increasing the transmission rate β. The rate at 

which susceptible people are exposed to the infection increases as β rises, which causes S to drop more 

quickly. This highlights the critical role of controlling transmission rates to prevent rapid depletion of the 

susceptible pool, which could otherwise accelerate the spread of the infection and overwhelm the healthcare 

system. Adjusting the protection rate η shows that increasing η enhances the number of protected individuals 

P, as a higher η reduces the rate at which susceptible individuals are lost to other states and increases the 

conversion rate from susceptible to protected. Effective protection strategies are therefore crucial in reducing 

the overall vulnerability of the population and mitigating the impact of an outbreak. The number of exposed 

individuals E rises with higher β values, as more susceptible individuals are exposed to the infection due to 

increased transmission. This increase in E eventually leads to a higher number of infected cases if exposed 

individuals transition to the infected state at a similar rate. This emphasizes the importance of reducing 

transmission rates to control the initial exposure rate and subsequent infection spread. Higher values of ϕ 

lead to an increase in the number of infected individuals I by accelerating the progression from exposed 

to infected states. This accelerated transition can lead to a surge in infected cases, highlighting the need 

for timely interventions to prevent a rapid increase in the disease burden. Effective m anagement o f this 

transition is essential to avoid overwhelming healthcare systems and reducing the overall impact of the 

disease. As ϕ increases, the number of treated individuals T also rises because a higher ϕ speeds up the 

transition from infected to treated states. This highlights the significance of effective treatment approaches
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in the management and control of the illness. Treating sick people as soon as possible is essential to limiting

the illness’s contagious period and containing its spread. A greater ν decreases the amount of time spent in

the infected and treated states just before recovery, which has a significant effect on the number of recovered

persons R. This leads to a quicker reduction in the number of infectious cases and contributes to a higher

recovery rate. Effective treatment and recovery strategies are thus vital in minimizing the duration and

impact of the disease, promoting overall population health and resilience.

Figure 5: Dynamics of Gonorrhea transmission with and without Protection

Discussion: The comparison between scenarios with and without protection reveals distinct differences

in the dynamics of the infection. Without protection, the number of susceptible individuals (S ) decreases

more rapidly, while the number of infected individuals (I) rises quickly due to higher transmission rates.

In contrast, with protection, the decline in susceptible individuals is slower, and the infection spreads more

gradually, resulting in a lower peak and overall number of infected individuals. This demonstrates that

protection significantly mitigates the spread of the disease, reducing both the speed and extent of infection

compared to the scenario without protection.

12. Conclusion

Examining the dynamics of gonorrhea infection is the aim of this effort. We c arry o ut independent 

analyses of the Gonorrhea reproduction. We discover that the model’s disease-free equilibrium point is 

locally asymptotically stable for values of R0 < 1. But when the system shows signs of external reinfection, 

the number of reproductions R0 is less than unity, which is insufficient to eradicate the di sease. We suggest 

that gonorrhea may be eradicated if R0 is smaller, based on our findings. Furthermore, we show 

mathematically
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that Gonorrhea dynamics has an equilibrium point when R0 is larger than unity. Sensitivity analyses are

examined after the model’s stability study. Numerical simulations are performed in the end.
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