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Abstract 

Delay differential equations (DDEs) are extensively utilized in fields such as control systems, 

biology, and engineering to model processes where current states depend on past states, effectively 

accounting for time lags. Key applications include population dynamics, epidemic modeling, and 

economic systems, where delayed responses significantly influence system behavior. This paper 

presents the first extension of the Optimal Auxiliary Functions Method (OAFM) to second-order 

and third-order DDEs. The strength of this method lies in its convergence control parameters and 

auxiliary functions. Notably, the OAFM guarantees the convergence of approximate solutions after 

just one iteration, without requiring assumptions about small or large parameters. The method 

demonstrates both effectiveness and efficiency, with its accuracy validated through graphical and 

numerical results. Additionally, the results obtained are compared with those from the least squares 

method. Auxiliary functions and convergence control parameters are employed to further manage 

the convergence of the OAFM. 

Key words: Delay differential equations, Least Square Method, Collocation Method, Optimal 

Auxiliary Functions Method. 
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1. Introduction 

Many relevant investigations in the areas of physics, engineering, biomathematics, and others are 

mathematically modeled using delay differential equations (DDEs). DDEs are differential 

equations in which the derivatives of certain unknown functions at two different time instants are 

correlated (the past and the present). Researchers in the engineering and bioscience fields 

commonly come across mathematical models based on DDEs [1]. 

In the modern era, Minorsky was the first researcher to explore the following type of delay 

differential equations                                                                                      

                                                            ' , , .f                                                              (1.1) 

Typically, DDEs have been handled using discretization-based numerical techniques. This stems 

from these foundational techniques being suitably applied to solving first-order linear and simple 

non-linear DDEs. Due to their innately complex structure, DDEs are very difficult to study and if 

its possible to achieve analytical solutions are achieveable then they are implicit in nature[1]. 

The reasons for studying DDEs is to introduce naturally appearing delays in the systems 

whichgives models more life and realistic portrayal.  This mathematically means DDEs have 

values which are dependent on previous solutions. Furthermore, time delays could be constant, 

dependent on time or state, or both[2]. 

The Delay Differential Equations (DDEs) were initially proposed in the 18th century by Laplace 

and Condorcet [3]. However, the theory and applications of those equations did not start to develop 

quickly until after World War II, and they have continued ever since. In 1942, Pontryagin 

developed the fundamental theory governing the stability of systems defined by these kinds of 

equations. Smith published an important book in 1957, Pinny in 1958, Bellman and Cooke in 1963, 

Halanay in 1966, Myshkis in 1972, Hale in 1977, Yanusherski in 1978, and Marshal in 1979 all 

wrote significant publications [4]. 

To further motivate the study of DDEs, there are many physical and technical systems which 

include intrinsic delays,also known as heredity or memories, retarded arguments after actions, dead 

times, or time lags [5]. It may be challenging to include time delays in mathematical models 

because pure delays are frequently employed to illustrate the impact of transmission, 

transportation, and initial phenomena [6]. Therefore, theprovide an effective model for a wide 

range of phenomena in the applied sciences, including population dynamics, infectious disease, 
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physiological and pharmaceutical kinetics, chemical kinetics, models of conveyor belts, urban 

traffic management, heat exchangers, robotics, navigational control of ships and aircraft, control 

theory, mathematical biology, mathematical economics, biochemical, medical, control system, 

biological models, and more general phenomena [7-9]. Delay equations used by Bunsen Berg et 

al. [10] for modeling the embryonic cell cycle. Patel et al. [11] proposed an iterative scheme for 

the optimal control systems with a quadratic cost functional.By using DDEs, the input-to-state 

stability of a time-invariant system with numerous non-commensurate and dispersed time delays 

as well as HIV-1 therapy for combating one virus with another, both have been recently modeled 

[7,12]. DDEs become particularly important when the model based on ordinary differential 

equations fails. 

There are a few classes of nonlinear ODEs for which solutions are easy to find despite the obvious 

connections between ODE and DDEs. In contrast, there may be a number of distinct and significant 

ways in which the solutions to DDEs problems and those to ODE problems diverge [14]. There is 

always a vast range of frequencies produced by delay problems. Numerical techniques, asymptotic 

solutions, approximations, and graphical approaches are employed to solve them. Due to a 

significant increase in the use of delay models, several authors have examined and proposed 

numerous methods for solving DDEs, Variation Iteration Method (VIM) [14], Spline methods 

[15], Optimal Auxiliary Function Method [16-17], Homotopy Analysis Method (HAM) [18], 

Homotopy Perturbation Method (HPM) [19], Adomain Decomposition Method [20], 

Kudryashov’s method [21], Modified Variational Iteration Algorithm‐II [22], Iterative 

Decomposition Method [23], the Differential Transform Method [24], the Runge-Kutta Method 

[25], the Hermite Interpolation Method [26], the Variable Multistage Method [27], the Direct 

Block One Step Method [28], B-spline Collection Method [29], the Direct Two And Three-Point 

One-Step Block Method [30] etc.  

The numerical solution of DDEs is extremely intriguing, and many techniques have been used to 

solve particular equations.. To demonstrate the analytical solution of homogeneous DDEs, Asl et 

al. [31] used Lambert functions. Also, Bellen et al. [32] described techniques for Gaussian points 

based on the predictor-corrector version of the one-step collocation method for non-stiff DDEs 

with time-dependent delays. Ismail et al. [33] compared the numerical results based on Newton 

Divided Difference and In't Hout interpolations, in order to solve delay differential equations. 

Martin et al. [34] introduced variable step size multistep methods. Evans et al. [35] used the 
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Adomian decomposition method and proposed a numerical method for linear and non-linear 

Higher Order Delay Differential Equations. While, Taiwo et al. [36] used an elementary 

decomposition methodfor solving Delay Differential Equations. In the scenario involving Constant 

and Variable Coefficients, Olvera et al. [37] expanded the enhanced the Multistage Homotopy 

perturbation method (EMHPM).  

 

A series of authors have used transformation methods to solve the problem, the Differential 

Transform Method by Liu et al. for Delay Differential Equations [38], with Shampine et al. [39] 

suggested a numerical solution as well. Aboodh et al. [40] used the Aboodh Transformation 

method, Ebimene et al. [41] applied Elzaki Transformation Technique, and  YAMAN et al. [42] 

used Daftardar-Jafari Method for solving Nonlinear Delay Differential Equations. Finally, the 

Sumudu Transform method (STM) was used to solve ageneric form of delay differential equations 

of the pantograph type  [43]. 

 

In the literature, there have been many alternative techniques used as well for BVPs such as HPM 

by Bellen and  Aslamnoor et al. [44] for DDE  BVPs. The Laplace Adomian Decomposition 

Method (LADM) [45] for an  second order of DDE BVP by Kanth et al.. More recently, Anakira 

et al. [46] expanded the applicability of the Optimal Homotopy Asymptotic Method (OHAM), in 

order to obtain the approximate analytic solution of DDEs. The dynamics of cutting machine 

operations were modeled by the stability lobes of DDEs, on the other hand, were determined by 

Insperger et al. [47] using the semi-discretization method. Based on the characteristics of the 

Chebyshev polynomials, Butcher et al. [48] created a method to obtain the stability lobes of milling 

machine operations and they demonstrated that this method is quicker than the full and 

semidiscretization methods because these solution techniques are approximations to the original 

DDEs by a series of ODEs [49]. To solve Delay Differential Equations, Adomian Decomposition 

Method (ADM) was utilized by Blanco et al. [50], Homotopy Perturbation Method (HPM) was 

used by Biazer et al. [51], the Homotopy Analysis Method (HAM) were studied by Alomari et al. 

[52]. In addition to particular types of equations, Predictor-corrector methods were examined by 

Bhalekar et al. [53]. For pantograph DDEs, the Residual Power Series Method was used by the 

authors of [54]. In [56- 58], there are many more numerical methods such as Galerkin and DDEs 

applications are discussed.  
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Stability, existence, and uniqueness of DDEs have been initially addressed in the works of [59-

61]. The existence and uniqueness of DDEs were examined by Eloe et al. [62] andRebenda et al. 

[63] solves DDEs by the extension of semi-analytical technique. The method of DTM was used 

by Mohammed et al. [64], Mirzaee et al. [65] and Rostam et al. [66] to get at a numerical solution 

to DDEs. Verleydeu presented the collection method with an iterative linear system solver in 2003 

[67] in order to compute the solution of a system of autonomous Delay Differential Equations. By 

using the direct Ritz method, Ordinary Delay Differential Equations were generalized to Partial 

Delay Differential Equations in 2004 and solved the variational formulation of the specific forms 

of partial delay differential equations [68]. In 2007, Luo [69] studied the exponential stability of 

nth order Delay Differential Equations. In 2006, Forde, in his doctoral dissertation [70] examined 

the modelling and stability of some biological systems as Delay Differential Equations. In 2001, 

Caus V. et al. [71] using non polynomial spline functions investigated the numerical stability and 

convergence of the numerical solution of Delay Differential Equations. Using the method of steps 

and the Laplace Transformation Method in 2009, Nagy T.K. studied the solution and stability of 

Delay Differential Equations [72].  

In summary, delay differential equations (DDEs) play a crucial role in modeling real-world 

systems where current states are influenced by past states, capturing the dynamics of processes 

across various fields such as engineering, biology, and economics. Despite their significance, there 

remains a gap in the application of efficient and robust analytical methods for solving second-

order and third-order DDEs. The Optimal Auxiliary Functions Method (OAFM) is introduced to 

address this gap, providing a systematic approach to obtain solutions that can enhance 

understanding and predictability in systems characterized by time delays.  

Novelty 

 First-Time Application: This paper presents the first application of the Optimal Auxiliary 

Functions Method (OAFM) to second-order and third-order Delay Differential Equations, 

marking a significant advancement in the methodology available for analyzing these 

equations. To the best of the author's knowledge, no one has yet applied the Optimal 

Auxiliary Functions Method (OAFM) to solve delay differential equations in the literature. 
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 Expanded Research Base: The method's successful application to a range of mathematical 

problems, such as Partial Differential Equations and the SEIR epidemic model, highlights 

its versatility and effectiveness in addressing both linear and nonlinear dynamics. 

In Section 2, the Basic Idea of OAFM is briefly reviewed, and in Section 3, the governing equations 

are examined by addressing the approximations to the solutions of the second and third order delay 

differential equations. Section 4 also includes results and discussions. Finally, Section 5 discusses 

the conclusion. 

2. Basic Idea of OAFM 

The general form of nonlinear differential equation is given below:  

                                                        +G   0, L                                          (1)  

in which an unknown function is    , a linear operator is L , a nonlinear operator N , and a 

source operator G . The initial or boundary conditions are given below  

                                                             
, 0.
d

d

 
 


 

  
 

                                       (2) 

We require an approximate solution    for Eq. (1) and Eq. (2), with only two components: 

                                                 0 1( ) = ( ) + (  ,C ),  1, 2,...,i i n                                 (3) 

Where Ci  from 1,2,...,i n  are currently unknown parameters. Putting Eq. (3) into Eq. (1), we get   

                                      0 1 0 1( ) +L ,   + ( ) + ( , ) +G  = 0. i iL C C                                 (4)  

To find the initial approximation 0( ),   the linear equation can be used  

                                            0
0 0( ) +G 0,            , 0

d
L

d

 
    


 

   
 

                 (5)  

The first approximation, yields from Eq. (5), the following equation  

                               1
1 0 1 1( , )  + ( ) + ( , ) = 0,     , 0.i i i

d
L C C B

d

 
       


 

  
 

             (6)  

In general, Eq. (6) is a nonlinear differential equation that is hard to solve. The nonlinear term 

from Eq. (6) is build up into the form at this point. Notice that the second term can be estimated 

as 
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                                    (k)1
0 1 0 0

1

(  ,C )
( ) + (  , C ) = ( )  + ( ) ,

!

kn
i

i
k k

        


                 (7)  

where 𝑛 → ∞ 𝑎𝑛𝑑   .
k

k

k

d

d


   To resolve the difficulties \ arise in solving the nonlinear 

differential equation (6) from using equation (7) to accumulate the convergence of the first 

approximate solution (  ,C ),i   we represent  eq. (6) with an alternative form of eq. (7) 

𝑁ሾζ଴ሺ𝜒ሻ ൅ 𝜁ଵሺ𝜒,𝐶௜ሻሿ ൌ 𝐴ଵ൫ζ଴ሺ𝜒ሻ,𝐶௝  ൯𝐹ൣ𝑁൫ζ଴ሺ𝜒ሻ൯൧ ൅ 𝐴ଶሺ𝜁଴ሺ𝜒ሻ,𝐶௞ሻ 

 resulting in  

            1
1 1 0 0 2 0 1( , )  + A ( ), ( )  + A ( ),  = 0,  , 0i j k

d
L C C F C B

d

 
         


 

     
 

  (8) 

where 1A  and 2A  are resultory auxiliary functions, and are selected based on the initial 

approximation 0( )  , or  0 ( )  , or in a combination of 0( )   and  0 ( ) .   The jC  and 

,kC  respectively are various unknown parameters with 1,2,..,p,j   1, 2,..., ,k p p n    .i j k   

and  0( )F     is the operator component of  0 ( ) .   

Minimizing the square residual error is one of the techniques that can be used to determine the 

unknown parameters jC  and kC  as accurately as possible 

                                                
 

 
2

 , ,, ,k i k

D

iJ C C C CR d                                                      (9) 

where    1, , ( , )  + ( , ) +G , , 1,2,..., , 1,..., . i k i iR pLC C C C i j k j k p n                
   

The residual minimization is subject to the following conditions:       

                                            
1 2

... 0
n

J J J

C C C

  
   

  
.                                                            (10)  

The convergence-control parameters can also be obtained by using the Ritz method, Galerkin 

method, Kantowich method, and collocation methods, etc. 

Remark: The auxiliary functions can exist in either form 0( )   or form  0 ( ) ,   or they can 

combine both forms. 
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 If 0( )   or  0 ( )   a polynomial function then the auxiliary functions should be the sum 

of    polynomial functions. 

  The auxiliary functions should be the sum of polynomial functions if 0( )   or  0 ( )   is 

a polynomial function. 

 If 0( )   or  0 ( )   are trigonometric, the auxiliary functions should equal the sum of the 

trigonometric functions. 

3. Governing Equations 

To demonstrate the effectiveness and precision of the suggested method, we offer approximate 

solutions for second order and third order delay differential equations in this section. Mathematica 

10 is used to perform all computations. 

Example 1. Take the second order delay differential equations, for instance [36] 

                                              
2

2
2

3
2,

4 2
0 1,

d

d
    


      
 

                               (14)  

where the given initial condition is 

                                                            0 0, ' 0 0.                                                         (15) 

The exact solution to equation (14) is given in [36], which is 

                                                                        2   .                                                          (16) 

From eq. (14), linear and nonlinear expressions are given  

                                                       

 

   

 

2

2

2

( ) ,

3
( ) ,

4 2

2.

d
L

d

N

G

 


    

 




     

 
 









                                         (17) 

We obtain the following zero order problem by applying the OAFM described in section (2):  

                                                     0

2
20

0
'

2
2 0, (0) 0, (0) 0.

d

d

  


                                   (18) 
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The solution for eq. (18) is given, 

                                                         2
0

41
12 .

12
( )                                                        (19)  

If eq. (19) is substituted for the nonlinear part of eq. (17), we obtain 

                                                        
4

2
0

13
( ) .

192
N

                                                            (20) 

By using OAFM, the first order problem is, 

                                   
2

1
1 0 2 02

'
0( ) 0, (0) 0, (0) 0,

d
N

d

   


                                    (21) 

We select the auxiliary functions 1 2,  in the following way, 

   

2 4 64 4 4 4
2 2 2 2

1 2 31 4

2

,

0.

13 13 13 13

192 192 192 192
C C C C

      
       
                 
 




   


            (22) 

The solution to eq. (21) is obtained by substituting eq. (20) and (22) into eq (21);  

 

 

 

    

   

   

   

 

1 2 1 21

2 3 2 3

8 106

1

2

3 4 3 4

3 4

2 14

16 18

1 0

13 96 13 13 576

30 5376 3317760

169 12288 169 184320

1622016 99090432

845 18432 13 845 129024

4423680 1082916864

169 845 774144 2197 169

51640270848

(

0

, )i

C C C CC

C C C C

C C C C

C
C C

 

 

 

 


  
  

 
 

 
 





 

6

3 4

4

4

22

24 2 8

0

4 4
2

3

.
1290240

120544699613184

999635 199927 4826809

750142881792 4348654387200 5410421842378752

62748517

8368119116212469760

C C

C C C

C



  



 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
 
 
 

            (23)  

By combining eq. (19) and eq. (21), the first order approximate solution by OAFM can be found 

(23),      
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                                                  0 1 1 2 3 4( ) ( ) ( , ,C , ,C )C C                                                 (24) 

     

     

   

1 2 1 21
0

2 3 2 3 3 4

3 4 3

8 16
2 4

12 14 16

18 20
4

13 96 13 13 5761
12

12 30 5376 3317760

169 12288 169 184320 845 18432

1622016 99090432 4423680

13 845 129024 169 845 774144

1082916864 516402708
( , )i

C C C CC

C C C C C C

C C C C
C

  

  

 
 

  
    

  
 





 

 3

24

22 26 2

4

4 4 4

0
4

8

3

999635
.

480 750142881792

2197 169 1290240 199927 4826809

120544699613184 4348654387200 5410421842378752

62748517

8368119116212469760

C

C C C C

C



  



 
 
 
 
 
 
 

 
 
 
   
 
 
  
 

            (25) 

Therefore, to calculate the exact values of the convergence control parameters , 1,2,3...iC i  , use 

the least squares method, as stated in eq. (25) 

                        1 2

3 4

7.43380999587875, 12.046912067424115,

9.2979628507085, 3.5379687045401496.

C C

C C

 
  

                             (26) 

The first order OAFM solution is given as, after substitution of eq. (26) in eq. (25),  

2 2 4

6 8 10

12 14

16

(1. 0.08333333333333333 0.24779366652929166 0.19714732

67348012 0.026810547981640703 0.06918392874676438 0

.017274771639942003 0.01296546326887011 0.005385583543

590115 .0
(

0
, )iC

  

  

 
 



  

  

 




18 20

22 7 24

9 26 11 28

.
008937711425761287 0.00008316812359553707

0.000004714671606980128 1.626561704408144 10 3.1563

34142197792 10 2.65295326607142 10 )

 

 

 



 

 
 
 
 
 
 
 
    
    

 

Table 1: Absolute error comparison for Problem 1 between the OAFM and the decomposition 

method. 

  OAFM 

Solution 

Exact 

Solution. 

Abs Errors 

[36] 

Abs Error 

OAFM 

𝟎. 0. 0. 0. 0. 

𝟎.𝟏 0.0100 0.01 2.6909 510  8.0875 610  

𝟎.𝟐 0.0401 0.04 1.0763 410  1.1798 410  
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𝟎.𝟑 0.0905 0.09 2.4218 410  5.0741 410  

𝟎.𝟒 0.1612 0.16 4.3056 410  1.2491 310  

𝟎.𝟓 0.2521 0.25 6.7277 410  2.1151 310  

𝟎.𝟔 0.3625 0.36 9.6890 410  2.5524 310  

𝟎.𝟕 0.4919 0.49 1.3191 310  1.9559 310  

𝟎.𝟖 0.6400 0.64 1.7237 310  8.9172 510  

𝟎.𝟗 0.8070 0.81 2.1837 310  2.9623 310  

𝟏 0.9923 1. 2.7003 310  7.6282 310  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Example 2 

Figure 1. The 2D graph produced by the exact verses OAFM solution to Problem 1.  
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Consider the third order delay differential equation [36] 

                        
3

2
3

,1 2 ,
2

0 1
d

d




      





                                                (27) 

subject to the initial condition 

                             ' ''
0 0 00 0, 0 1, 0 0.                                                    (28) 

The exact solution to equation (27) is given in [36], which is 

               ( ) ( ).sin                                                                             (29) 

From eq. (27), the linear and nonlinear expressions are  

 

                                        

  

  

 

3

3

2

.

,

2 ,
2

1

L
d

N

G

d







 










    















                                                                    (30) 

Using the OAFM stated in section (2), we arrive at the following zero-order problem: 

                                                    3
0

1
6

6
    .                                                               (31) 

Here, we choose 1 2,A A based on the first operator's non-linear operator. 

                                         

1 1 2

2 3 4

24 4

4 64 4

8 8

.

,

8 8

A C C

A C C

 

 

   
    

   

   
    

   

                                                               (32) 

We obtain the first-order solution by applying the OAFM method outlined for Problem 1: 
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9
1 1

11 13

13 15 17
1

19 27

1

2 2 2

3 4

14189260800 601968640 7235200
1

( ) 520934400 27287040 380380 .
114422199091200

4804800 24871

C C C

C C C

C C



  

   

 

  
 

     
  

           (33) 

We combine Eqs. (31) and (33) to get the OAFM solution of the first order:    

9 11 13 153
1 1 1 2

1917 27
32 4

(  + 72 C2) 
 - + - +

6 8064 190080 15814656 4193280( , ) .

+ - -
300810240 23814144 4600627200

i

C C C C

C
CC C

   





 

 
 

 
 
 
 

                         (34) 

The least squares method is used to determine the convergence control parameters found in 

equation (34). Eq. (35) provides the numerical values. These numbers in eq. (34) give us the first-

order approximation of the answer to problem 2, shown in fig. 2.       

                          1 2

3 4

64437.9111676810, 3339289.387826368,

2.433012058446148, 1.30654767236302.

C C

C C

  
  

                           (35) 

Table 2: Third order delay differential equations for Problem 2, approximate solution found by 

OAFM. 

  OAFM 

Sol 

Exact Sol 

 [36] 

Abs Error 

OAFM 

0. 0. 0. 0. 

0.1 0.0998 0.0998 9.1299 810  

0.2 0.1986 0.1986 6.7360 610  

0.3 0.2951 0.2955 1.7447 410  

0.4 0.3821 0.3894 2.0646 310  

0.5 0.4655 0.4794 1.3888 210  

0.6 0.43216 0.56464 0.13247 110  

 

Table 3: Absolute error for the different numbers of the convergence control parameter obtained 

by OAFM. 
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  OAFM 

Solution 

Exact 

Solution  

Absolute Error 

using 1C and 2C  

 Absolute Error 

using 1C , 2C and 3C   

 Absolute Error using 

1C , 2C , 3C  and 4C  

0. 0. 0. 0. 0. 0. 

0.1 0.09982 0.09983 6.02843 610  1.35998 710  9.12993 810  

0.2 0.19832 0.19866 3.42256 410  1.60182 510  6.73605 610  

0.3 0.29209 0.29552 3.42351 310  3. 53646 410  1.74478 410  

0.4 0.37279 0.38941 1.66264 210  3.24894 310  2.06466 310  

0.5 0.42569 0.47942 5.37309 210  1.75191 210  1.38887 210  

0.6 0.43216 0.56464 0.13247 110  6.49447 210  6.10830 210  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3 

Figure 2. The 2D graph produced by the exact verses OAFM solution to Problem 2. 
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 Consider the second order Nonlinear proportional delay differential equation[42] 

                                                   
2

2
2

( ) 5 , 0 1
2

d

d

    


      
 

                                  (36) 

subject to the initial condition  given by, 

                                                              '
0 0(0) 1, (0) 2.                                                   (37) 

The exact solution to eq. (36) is given in [42], which is 

 

                                                                     2( ) .e                                                       (38) 

The auxiliary functions 1 2,   can be choose for Example 3: 

                   
2 4 6

1 1 2 3 4

2

(cos( )) (cos( )) (cos( )) (cos( )) ,

0.

A C C C C

A

      


                                 (39) 

then using the same procedure as discussed in Example 2, we get zero-order and the first order 

OAFM solution for Example 3: 

                                               0 cos( ) 2si ( .) n )(                                                  (40) 

      1

161.976 + (10.4752 - 51.2296 ) +24.0056cos(2 )-1.71599 cos(3 )-

0.3777cos(4 )+0.0677949 cos(5 ) + 0.0109339 cos(6 ) -0.00240993
( , )

 cos(7 ) - 28.1586 sin( ) + cos( ) (-183.964+25.6664 sin( )) -2.iC

   
  

 
   

 .
8251

5sin(3 ) + 0.102989 sin(5 ) - 0.00321323sin(7 )  

 
 
 
 
 
 

     (41) 

By using OAFM, the first order problem is obtained by combining eq. (40) and eq. (41),  
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2 3 4

2 3 4 2 3 4

2
1 1 2 3

4 1 2 3 4

(1/1128960)(-4821600 C -3732918 C -3147569 C + 840 

(  (-128 (35 C +21C +15 C )+525(8 C +6 C +5 C ) )-

420 C (-37+8 +6 ))-8820 (1600 C -8 (16+90 C +75 C

)-525 C ) cos( )+22050 (48 C -80 ( C + C )-75 C )cos(2

( , ) )iC

 

 


  
2 3 4 3

4 3 4 4

4 2 3

4 1 2 3 4

 +14700 (16 C +20 C +21C )cos(3 ) - 55125 (2 C +3

C )cos(4 )+5292 (4 C +7 C )cos(5 )-12250 C cos(6 )+

2700 C cos(7 ) -2257920 sin( )+176400 (16 C +8 C +5

C )sin( )+1411200 sin(2 )+19600(16 C +12 C +9 C

) sin(3 )+ 7

C


  

 
 
 3 4 4

.

056(4 C +5 C )sin(5 )+3600 C sin(7 )) 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

                          (41) 

The least squares method is used to determine the convergence control parameters found in 

equation (41). Eq.(41) provides the numerical values. These numbers in eq. (41) give us the first-

order approximation of the answer to problem 2, shown in fig. 2.      

                        
1 2

3 4

10.26654949107283, 13.63809934533353,

5.379148619033602, 1.007669976790007.

C C

C C

  
  

                           (42) 

 

 

 

 

 

Table 4: Approximate solution, for nonlinear second order proportional Delay differential 

equations for Problem 3, obtained by OAFM. 

   OAFM  

Solution 

 Exact 

solution [42] 

Abs Error 

 OAFM 

0 1. 1. 1.1990 1410  

0.1 0.8187 0.8187 1.2464 610  

0.2 0.6703 0.6703 2.9469 610  

0.3 0.5488 0.5488 4.6849 610  

0.4 0.4493 0.4493 6.4888 610  
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0.5 0.3678 0.3678 8.9538 610  

0.6 0.3011 0.3011 1.4104 510  

0.7 0.2466 0.2465 1.7193 510  

0.8 0.2022 0.2018 3.3110 410  

0.9 0.1670 0.1652 1.7483 310  

1. 0.1415 0.1353 6.2440 310  

 

 

 

 

 

 

 

 

 

 

 

 

4. Results and discussions  

Without the use of small parameter assumptions or discretization, the numerical problems of the 

formulation shown in section 3 and the extension of the (OAFM) scheme for (DDEs) presented in 

section 2 provide a highly accurate solution for the difficulties at hand, find the numerical 

approximation solutions to the second order and third order delay differential equations for 

problems 1-3. Figure 1 shows the approximate solution by OAFM for the exact solution     

and the second order approximate solution ( , )iC  . Comparisons of the absolute errors between 

the suggested method and the exact solution are shown in Table 1. The OAFM is seen to converge 

 

 

Figure 3. The 2D graph produced by the exact verses OAFM solution to Problem 3. 
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to exact solution. Figure 2 shows the approximate solution via OAFM for the exact solution     

and the third order approximate solution ( , )iC  . The approximate and exact solutions are shown 

in Table 2 respectively. Table 3 shows the Absolute error for the different numbers of the 

convergence control parameter obtained by OAFM, which shows that increasing the number of 

convergence control parameters, the OAFM converged rapidly to exact solution. The numerical 

values of the convergence control parameters are calculated using the least square method. Figure 

3 shows the approximate solution via OAFM for the exact solution     and the second order 

approximate solution ( , )iC  . The approximate and exact solutions are shown in Table 4 

respectively. The OAFM is seen to converge to exact solution. The numerical values of the 

convergence control parameters are calculated using the collocation method. 

Seema et al., A Semi-Analytical Framework for higher-Order

18



5. Conclusion  

The Optimal Auxiliary Functions Method (OAFM) has been applied for the first time to solve 

second-order and third-order delay differential equations without requiring assumptions about 

small or large parameters. This innovative approach provides a more generalizable solution 

framework, yielding highly accurate numerical approximations when compared to exact solutions. 

The OAFM demonstrates efficient convergence, achieving rapid convergence to the exact solution 

after just one iteration, which highlights its effectiveness. The method utilizes auxiliary functions 

and carefully selected convergence control parameters to ensure reliable convergence. Results are 

illustrated through figures and tables, which show the effectiveness of the OAFM by comparing 

approximate solutions with exact solutions, revealing low absolute errors. Moreover, the OAFM 

effectively addresses strong nonlinear problems, showcasing its robustness compared to traditional 

methods. Notably, the OAFM offers significant advantages over other perturbation and numerical 

methods by eliminating the need for discretization, simplifying the implementation process. 

Increasing the number of convergence control parameters further enhances the accuracy and speed 

of convergence to the exact solution. The numerical values of these convergence control 

parameters are calculated using both collocation and least squares methods, providing a 

comprehensive analysis of the approach. 
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