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Abstract

Rabies continues to be a major hazard to public health around the world, especially

in developing countries. This article proposes an equation that describes the mechanics

of animal-to-animal transmission of rabies, accounting for vaccination and infected

immigrants as potential preventative strategies. The effective reproduction number

(R0) was computed using the next-generation matrix (NGM) Method. The Routh–Hurwitz

Criterion was utilized to identify the disease-free equilibrium point (DFE). It was

shown to be unstable in all other cases and to exhibit local asymptotic stability if

(R0 < 1). It was also found that DFE is globally asymptotically stable and quadratic

Lyapunov stable. Furthermore, the normalized forward sensitivity index approach

and the central manifold theory for the bifurcation analysis were used to do a

An examination of the model parameters’ sensitivity on the (R0). The simulation
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analysis’s numerical analysiscomparison of RK-4 and the NSFD Method was performed

using MATLAB software. A greater vaccination rate and fewer infected immigrants

would delay the decline’s progress, according to the simulated data’s conclusions,

which were visually shown.

Keywords: Ebola Disease; Stability analysis; Sensitivity analysis; Bifurcation

analysis; and RK-4 method

1. Introduction

The fatal zoonotic virus that causes rabies is mostly spread by to humans and 

other animals through the bites or scratches of infected animals like skunks, dogs, 

foxes, raccoons, and bats. The virus, found mainly in the saliva of these animals, 

enters the bloodstream and travels via the peripheral nerve system to the brain, or 

through neuromuscular junctions after replicating in the muscles. Upon reaching 

the brain, Rabies causes acute inflammation, l eading t o c oma a nd, ultimately, 

death. The disease has the highest case fatality rate of any infectious disease, 

approaching 100% once clinical symptoms appear.[1, 2]

The primary human source of rabies is dogs, responsible for the vast majority 

of cases worldwide. Transmission occurs through bites, scratches, or contact with 

saliva on mucosal surfaces like the eyes, nose, or mouth. While Rabies can also 

be transmitted through organ transplants or aerosol exposure, such instances are 

exceedingly rare. Early symptoms of Rabies mimic those of the flu, including fever, 

pain at the site of the bite, and unusual sensations. As the central nervous system 

becomes infected, it leads to severe brain inflammation, c ausing hyperactivity, 

paralysis, and death.[3]

Following a bite, the location and intensity of the bite, the quantity of virus 

delivered, and the promptness of post-exposure prophylaxis (PEP) all affect the
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chance of contracting rabies. The likelihood of contracting rabies following a

bite in the absence of PEP to the head is about 55%, while bites to the limbs

carry a lower risk. Rabies transmission through rodents is very uncommon, and

Transmission from person to person is quite uncommon with only a few documented

cases occurring through tissue and organ transplants.[4]

The incubation period for Rabies in humans typically ranges from 1 to 3 months

but can vary from as short as 7 days to over a year, depending on the the bite’s

location and intensity, the quantity of virus injected, and additional host variables.

In comparison to bites on the extremities, bites on the face, neck, and hands have

a higher risk and a shorter incubation period because they are closer to the brain.

The incubation time in dogs is about 3 to 8 weeks but can extend up to 6 months in

rare cases.[? ]

Despite the high fatality rate, a few cases of human survival have been documented,

mostly involving post-exposure vaccination or specialized treatment protocols like

the Milwaukee protocol. However, survival has been more common in cases involving

bat strains of the virus, whereas canine strains are generally more virulent.[5]

Rabies remains a significant public health concern, particularly in Africa and

Asia, where the majority of cases occur, especially in children under 15. In these

regions, dog-mediated transmission is to blame for up to 99% of occurrences of

rabies in humans. Poverty, lack of awareness, and inadequate healthcare infrastructure

contribute to the high mortality rates in these areas. However, Rabies elimination is

possible with widespread dog vaccination initiatives, which have proven effective

in reducing transmission in various settings worldwide.[5, 6]

Mass vaccination of dogs is the primary strategy for controlling Rabies, effectively

interrupting transmission between canines and lowering the danger to people. The

chance of contracting rabies from other sources, such wildlife, is increasing as

the prevalence of rabies caused by dogs decreases. Wild carnivores and bats are
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significant reservoirs for the virus, posing a higher risk for transmission.[7]

Various mathematical models have been developed to study Rabies transmission

dynamics and evaluate control strategies. These models have shown that vaccination

is the most effective method for controlling the disease, while culling is less effective.

Some models also consider the impact of time delays between infection and infectiousness,

demonstrating that such delays can significantly affect the mechanics of the spread

of rabies and the effectiveness of control measures.[8]

In summary, Rabies is a nearly universally fatal disease with significant public

health implications, particularly in regions with inadequate vaccination coverage

and healthcare infrastructure. Mass vaccination campaigns targeting dogs are crucial

for controlling and ultimately eliminating the disease, with mathematical models

providing valuable insights into the most effective strategies for Rabies control.[9]

2. Model Formulation



S h
dt = Ah + α2Vh − (α1 + µh + βdhIh)S h,

Eh
dt = βdhS hIh − (αh + δh + µh)Eh,

Ih
dt = αhEh − (µh + mh)Ih,

Vh
dt = α1S h − (α2 + µh)Vh,

Rh
dt = δhEh − µhRh,

S d
dt = Bd + ρdVd − (cd + µd + βddId)S d,

Id
dt = βddS dId − (µd + md)Id,

Vd
dt = cdS d − (µd + ρd)Vd,

(1)

Initial conditions are given below:

S h(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Vh(0) ≥ 0, Rh(0) ≥ 0, S d(0) ≥
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0, Id(0) ≥ 0.Vd(0) ≥ 0,

Flow-chart of the proposed Model

Figure 1: Flow-chart of the proposed Model
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Parameters Humans Dogs

Recruitment Rate Ah: The recruitment rate of

susceptible humans (e.g., birth

rate or immigration).

Bd: The recruitment rate of susceptible

dogs (e.g., dog birth rate).

Vaccination Rate α1: The rate at which susceptible

humans are vaccinated.

cd: The rate at which susceptible dogs

are vaccinated or treated.

Immunity Loss Rate α2: The rate at which vaccinated

humans lose immunity and become

susceptible again.

ρd: The rate at which vaccinated dogs

lose immunity and become susceptible

again.

Transmission Rate βdh: The transmission rate of

the disease from the vector (e.g.,

mosquitoes) to humans.

-

Natural Death Rate µh: The natural death rate of humans. µd: The natural death rate of dogs.

Infectious

Progression

δh: The rate at which exposed humans

become infectious.

-

Disease-Induced

Mortality

mh: The disease-induced mortality rate

in humans.

md: The disease-induced mortality rate

in dogs.

Infectious

Progression Rate

αh: The rate at which exposed humans

become infectious.

-

Vector Transmission

Rate

βdd: The transmission rate of the

disease from infected vectors to

susceptible vectors.

-

Table 1: Parameters for Humans and Dogs 
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3. Model Analysis

We shall study model system (1) in the following biologically viable area.

Model system (1) is essentially split into two areas, such Ω = Ωh ×Ωd,[10]

Lemma 3.0.1. the solution set {S h, Eh, IhVh,Rh, S d, Id,Vd} ∈ R8
+ of Model system

(1), is contained in the feasible region Ω,

Proof. Suppose {S h, Eh, IhVh,Rh, S d, Id,Vd} ∈ R8
+ for every t > 0. In order to

examine the dynamics of model system (1), we aim to demonstrate that the area Ω

is positively invariant.

Nh(t) = S h(t) + Eh(t) + Ih(t) + Vh(t) + Rh(t), (2)

Nh(t) = S d(t) + Id(t) + Vd(t), (3)

where Nd(t) represents the total dog population at any given moment. Nh and (t)

represent the entire human population at any given period. (t) Formula (2) gives

Nh(t)
dt
= Ah − (µhS h + µhEh + µhIh + µhR) − mhIh (4)

Nh(t)
dt
= Ah − (Nh(t) − mhIh (5)

Similarly 3 gives

Nd(t)
dt
= Bd − (µdS d + +µdId + µdV) − mdId (6)

Nd(t)
dt
= Bd − (Nd(t) − mhId (7)

Now, assuming that the dogs’ compartment is free of disease-induced mortality

rates and culling effects, it follows that 6 and 7 become

Nh(t)
dt
= Ah − mhN − h (8)
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Nd(t)
dt
= Bd − md(Nd(t), (9)

Suppose Nh(t)
dt ≥ 0, Nd(t)

dt ≥ 0,Nh ≥
Ah
mh

and Nd ≥
Bd
md
≥

Bd
md

, and after that using

the theorem put forth in[32] on differential inequality results in 0 ≥ Nh ≥
Ah
mh

and

0 ≥ Nd ≥
Nd
md

8 and 9
Nh(t)

dt
≥ Ah − mhN − h (10)

Nd(t)
dt
≥ Bd − md(Nd(t), (11)

Solve 10 and 11 using the IF (integrating factor) approach. Hence, I.F = e
∫

p(t)dt

and dy
dt + p(t)y = Q. The region is the possible solution for the dogs population in

model system (1) after some algebraic modification.

Ωd = {(S d, Id,Vd) ∈ R3
+,Nd ≥

Bd

md
} (12)

In a similar manner, the human population does as well. According to 11, this

suggests that the human population of model system (1) may be solved in the area

Ωh = {(S h, Eh, Ih,Vh,Rh) ∈ R5
+,Nh ≥

Ah

md
} (13)

There for, Ω contains the workable solutions. Ω = Ωh × Ωd, as a result It follows

from the common comparison theorem on differential inequality in [33] that

Nh ≥ Nh(0)e−(mh)t +
Ah

mh

(
1 − e−(mh)t

)
(14)

Nd ≥ Nd(0)e−(md)t +
Bd

md

(
1 − e−(md)t

)
(15)

Hence, the total dog population size Nd(t) as t → ∞ approaches Dd
md

. Similarly,

as t → ∞, the size of the human population as a whole Nh(t) approaches Ah
mh

. This

means that as time approaches infinity, the infected state variables (S h, Eh, Ih, and Vh)

of the two populations trend to zero. Consequently, all of the solutions in R8
+ are
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being drawn to or attracted by the area Ω, which results in the set of workable

solutions for model system (1) as described in [10].



S h

Eh

Ih

Vh

Rh

S d

Id

Vd



∈ R8
+|



S h ≥ 0

Eh ≥ 0

Ih ≥ 0

Vh ≥ 0

Rh ≥ 0

S d ≥ 0

Id ≥ 0

Vd ≥ 0

Nh ≥
Ah
mh

Nd ≥
Bd
md



(16)

Hence , (1) is mathematically well posed and epidemiologically meaningful.

□

4. Basic Qualitative Properties of the model(1)

The rabies Model, given the equation(condition no) is significant both mathematically

and physiologically if and only if each state variable in the model is non-negative

bounded in the invariant zone.

Ω = {(S h, Eh, Ih,Vh,Rh, ) ∈ R5
+, Nh ≥

(
(α2 + µh)Ah

(α1α2 − (α2 + µh))

)
S d, Id,Vd ∈ R3

+, Nd ≥

(
α1(α2 + µh)Ah

(α1α2 − (α2 + µh))(α2 + µh)

)
}

(17)

Theorem 4.1. (Positivity of the model solutions) Let us given the initial data in 

equation (condtion no) then the solution S h(t), Eh(t), Ih(t), Vh(t),

Rh(t), S d(t), Id(t), Vd(t) of the Model (1), are non-negative for all time t > 0, [11]

34

Jehagir et al., Global Dynamics and Numerical Simulation of..



Proof. Let use consider S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) >

0, S d(0) > 0, Id(0) > 0,Vd(0) > 0 then for all time t > 0, we have to show

that S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) > 0, S d(0) > 0, Id(0) >

0,Vd(0) > 0. Define Π = S up{S h(0) > 0, Eh(0) > 0, Ih(0) > 0,Vh(0) > 0,Rh(0) >

0, S d(0) > 0, Id(0) > 0,Vd(0) > 0}. We may now argue that Π > 0, if Π = +∞,

then non-negativity exists given that every state variable in the rabies model (1)

is continuous and positive. However, if 0 < Π < +∞, then S (Π) = 0, S h(Π) >

0, Eh(Π) > 0, Ih(Π) > 0,Vh(Π) > 0,Rh(Π) > 0, S d(Π) > 0, Id(Π) > 0,Vd(Π) > 0

from the first equation of the model (1) we get

S (Π) = M1S (0) + M1

∫ Π

0
exp

∫ Π
0 (α2+µh+βdh)dt (Ah + α2) dt > 0,

where

M1 = exp−(µht+
∫ Π

0 α2+βdh)>0, S (0) > 0.

and from the meaning of Π the solution S h(t) > 0, Eh(t) > 0, Ih(t) > 0,Vh(t) >

0,Rh(t) > 0, S d(t) > 0,2, Vd(t) > 0, Id(t) > 0 Moreover, since the exponential

function is always positive, S (Π) , 0. hence the solution S (Π) > 0. Thus, all

of model (1)’s solutions are non-negative after applying the same process for Π =

+∞. □

5. Disease Free Equilibrium Point (DFE)

This can only be accomplished if there is no RABV infection in the population,

which implies that there are no humans who have been treated, recovered, or

infected by diseased dogs—that is, (E0
h = I0

h = R0
h = I0

d = 0). After model

equations (1) are found, the RABV free equilibrium is provided by (F0)

F0 = (S 0
h, E

0
h, I

0
h ,V

0
h ,R

0
h, S

0
d, I

0
d ,V

0
d , ) (18)
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F0 =

(
(α2 + µh)Ah

α2αh + (α2 + µh)2 , 0, 0,
(α2 + µh)2Ah − Ah(αhα2 + (α2 + µh)2)

αh(α2αh + (α2 + µh)2)
, 0,

(µd + ρd)Bd

(µd + ρd)(cd + µd)
, 0,

cd(µd + ρd)Bd

(µd + ρd)2(cd + µd)

)
(19)

6. Basic Reproductive Number R0

The Basic Reproductive Number in epidemiology, or R0, is a crucial idea,

used to measure the transmission potential of an infectious condition. It displays

the average number of secondary infections that an infected individual within a

susceptible group produces. In other words, it quantifies the ability of a disease

to spread within a population. If R0 > 1, each existing infection is causing more

than one new infection, indicating that the disease is likely to spread within the

population. If R0 < 1, each existing infection is causing less than one new infection,

suggesting that the disease will likely die out in the population over time. Now we

use the NGM Method to the R0 as follow [1, 9]

Eh
dt = βdhS hIh − (αh + δh + µh)Eh,

Ih
dt = αhEh − (µh + mh)Ih,

Id
dt = βddS dId − (µd + md)Id,

(20)

F =


βdhS hId

0

βddS dId

 , F∗ =


0 0 βdhS 0

h

0 0 0

0 0 βddS 0
d

 ,

V =


(αh + δh + µh)Eh

(µh + mh)Ih − αhEh

(µd + md)Id
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V∗ =


(αh + δh + µh) 0 0

−αh (µh + mh) 0

0 (µd + md)


V−1 =


1

αh+δh+µh
0 0

αhmd+eh+ehαhµd
(md+µd)(md+µd)(αh+δh+µh)

1
md+µd

0

0 0 1
md+µd


F∗V−1 =


0 0

βdhS 0
h

md+µd

0 0 0

0 0 βddS 0

(md+µd)


R0 =

βdd

(md + µd)

(
cd(µd + ρd)Bd

(µd + ρd)2(cd + µd)

)
(21)

7. Local Stability of Disease Free Equilibrium Point

Theorem 7.1. In set B, at the disease-free equilibrium F0, the suggested system

(1) is considered local asymptotically stable (LAS) if R0 < 1, and unstable if R0 >

1[10].

Proof.

JE0 =



−(α1 + µh) 0 0 α2 0 0 βdhS ∗h 0

0 −c1 0 0 0 0 βdhS ∗h 0

0 αh −c2 0 0 0 0 0

α1 0 0 −c3 0 0 0 0

0 δh 0 0 −µh 0 0 0

0 0 0 0 0 −(cd + µd) βddS ∗ ρd

0 0 0 0 0 0 −(µd + md) 0

0 0 0 0 0 cd 0 −(µd + ρd)


(22)
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where, c1 = (αh + δh + µ), c2 = (µh +mh), c3 = (α2 + µh) λ1 = −(α1 + µh), λ2 =

−(αh + δh + µh) the compounding eigenvalue of the of the above system is given,

λ1 = −(α1 + µh) < 0, since α1 + µh) > 0 and λ2 = −(αh + δh + µh) < 0, since

(αh+δh+µh) > 0, λ3 = −(αh+δh+µh)(µh+mh) < 0, since (αh+δh+µh)(µh+mh) > 0

λ4 = −(α1α2−(α2+µh)2) < 0, since (α1α2−(α2+µh)2) > 0 λ5 = −µh(αh+δh+µh) <

0, since λ5 = −µh(αh + δh + µh) > 0, λ6 = −(cd + µd)cd < 0, since (cd + µd)cd < 0,

λ7 = −(µd + md) < 0, (µd + md) > 0 λ8 = −(cdρd(µd + δd)(cd + µd)) < 0, since

(cdρd(µd + δd)(cd + µd)) > 0 all the eigenvalue are negative, therefore the disease

free of rabies since there are no human cases of the disease. There is no infection

in the host population, and the human population as a whole is in good health.

Additionally, the F0 is unstable if R0 > 1. R0 > 1, □

7.1. Global Stability of the disease free equilibrium

The Castillo-Chavez et al. [11] method is used to examine the equilibrium

devoid of disease’s worldwide stability. Subsequently, the model system (1) might

be stated as follows: 
dP
dt = F(P,Q),

dQ
dt = G(P, 0),G(P, 0) = 0.

(23)

Theorem 7.2. Where by P ∈ Rm represents the disease-free equilibrium point,

Q ∈ Rn, the number of infected compartments, and the number of uninfected

compartments, E0 = (P0, 0). In order to ensure the global asymptotic stability

of DEF, it is necessary to meet the conditions (H1) and (H2) below. The point of

equilibrium for the disease free, E0 = (P0, 0), is globally asymptotically stable if

R0 < 1, and unstable if otherwise [12]

Proof. : The rabies model (1) can written as, p = (S h,Vh,Rh, S d,Vd), Q = (Eh, Ih, Id),

and E0 = {
(α2+µh)Ah

α2αh+(α2+µh)2 , 0, 0,
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 , 0, (µd+ρd)Bd
(µd+ρd)(cd+µd) , 0,

cd(µd+ρd)Bd
(µd+ρd)2(cd+µd) }.
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Now we have

dP
dt
=



Ah + α2V − (α2 + µh + βdhId)S h

α1S h − (α2 + µh)Vh

δhEh − µhRh

Bd + ρdVd − (cd + µd + βddId)S h

cdS d − (µd + ρd)


(24)

At disease free equilibrium point we get

dP
dt
= (P0, 0) =



Ah + α2
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 − (α2 + µh + βdhId) (α2+µh)Ah
α2αh+(α2+µh)2

α1
(α2+µh)Ah

α2αh+(α2+µh)2 − (α2 + µh)Ah + α2
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2

0

Bd + ρdAh + α2
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 − (cd + µd + βddId) (α2+µh)Ah
α2αh+(α2+µh)2

cd
(α2+µh)Ah

α2αh+(α2+µh)2 − (µd + ρd)


(25)

F(P0, 0) has a unique equilibrium point[
(α2+µh)Ah

α2αh+(α2+µh)2 ,
(α2+µh)2Ah−Ah(αhα2+(α2+µh)2)

αh(α2αh+)(α2+µh)2 ,
(µd+ρd)Bd

(µd+ρd)(cd+µd) ,
cd(µd+ρd)Bd

(µd+ρd)2(cd+µd)

]
. This is globally

asymptotically stable; hence, the second condition’s condition (H1), holds.(H2),

G(P,Q) =


βdhS hId − (αh + δh + µh)Eh

αhEh − (µh + mh)Ih

βddS dId − (µd + md)

 (26)

Then we get

X = A1(P0, 0) =


−(αh + δh + µh) 0βdhS 0

h

αh −(µh + mh) 0

0 0 βddS 0
d

 (27)

Now that the off diagonal elements of the matrix X are non-negative, it is evident

 39

Jehagir et al., Global Dynamics and Numerical Simulation of..



that the matrix is a matrix. G−(P,Q) = XA −G(P,Q) equals to

G−(P,Q) =


−(αh + δh + µh) 0 βdhS 0

h

αh −(µh + mh) 0

0 0 βddS 0
d



Eh

Ih

Id



βdhS hId − (αh + δh + µh)Eh

αhEh − (µh + mh)Ih

βddS dId − (µd + md)


(28)

G−(P,Q) =


βdhS 0

h − (αh + δh + µh)

0

βddS 0
d − (µd + md)V0

d

 (29)

. Since it clear that S 0
h > S h and V0

h > Vh, and S 0
d > S d, and V0

d > Vd,

Consequently, it is evident that G−(P,Q) ≥ 0, and P0 = (S 0
h,V

0
h , S

0
d.V

0
d ) is globally

asymptotically stable, □

8. Endemic Equilibrium Point

A second equilibrium solution derived by solving the system of algebraic equations

represents the case where I , 0. This approach is known as the "endemic equilibrium

solution" and looks like this:[9]

S ∗h =
Ah+α2V∗

(α2+µh+βdhI∗d) ,

E∗h =
βdhS ∗hI∗d

(αh+δh+µh) ,

I∗H =
αhEh

(µh+mh)I∗h
,

V∗h =
α1S ∗h

(α2+µh) ,

R∗h =
δhE∗h
µhR∗h
,

S ∗d =
Bd+ρdV∗d

(cd+µd+βdd I∗d) ,

I∗d =
βddS ∗d I∗d
(µd+md) ,

V∗d =
cdS ∗d

(µd+ρd) ,

(30)

 40

Jehagir et al., Global Dynamics and Numerical Simulation of..



8.1. Global Stability of the Endemic Equilibrium Point

The global stability of the endemic equilibrium point B0 was established using

the Lyapunov function developed by Vargas-De-León [23], and it was further studied.

The Lyapunov function V(x) is said to be asymptotically globally stable at the point

where it occurs if dV
dt < 0.

Theorem 8.1. The rabies epidemic in the Model System has a unique endemic

equilibrium point B∗, which is unstable otherwise and globally asymptotically

stable if R0 > 1.[13]

Proof. Examining the quadratic Lyapunov function by itself

V(y1, y2, y3, ..., yn) =
n∑

i=1

1
2

[
yi − y∗i

]2
,

where y∗ is the endemic equilibrium point and yi is the population of the ith compartment.

The following is a positive definite function for the model system 1.

V(S h, Eh, Ih, Vh, Rh, S d, Id, Vd) =
n∑

i=1

1
2

[
yi − y∗i

]2
, (31)

The rabies model system’s Lyapunov function is thus expressed as follows:

V =
1
2

[(S h−S ∗h)+(Eh−E∗h)+(Ih−I∗h)+(Vh−V∗h )+(Rh−R∗h)+(S d−S ∗d)+(I−I∗d)+(V−V∗d )]2,

(32)

Clearly V : R8
+ → R is a differentiable, continuous function. Next, the function

V(t) can be differentiated with respect to time to obtain:
dV
dt = [(S h − S ∗h) + (Eh − E∗h) + (Ih − I∗h) + (Vh − V∗h ) + (Rh − R∗h) + (S d − S ∗d) + (I −

I∗d) + (V − V∗d )]
d
dt (S h + Eh + Ih + Vh + Rh + S d + Id + Vd)

⇒
dN
dt

(S h + Eh + Ih + Vh + Rh + S d + Id + Vd) = Ah − µh(Nh(t)) − mhIh − Nd(t) − mdId + Bd−
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(S ∗h + E∗h + I∗h + V∗h + R∗h) =
Ah + mh

µh
, (S ∗d + I∗d + V∗d ) =

Bd − µd

µd
, (33)

dVh

dt
=

[
Nh(t) −

Ah − mhI∗h
µh

] [
Nh(t) −

Ah − mhI∗h
µh

]
(34)

dVh

dt
= −

[
Nh(t) −

Ah − mhI∗h
µh

]2

(35)

dVd

dt
= −

[
Nd(t) −

Bd − mdI∗d
µd

]2

(36)

Since dVh,d
dt < 0 is evident, it follows that B0, the Endemic Equilibrium Point, is

asymptotically stable worldwide. □

9. Numerical Simulation

This section’s numerical simulation was carried out with the aid of MATLAB2016a

software and the ODE solver that combines the applications of Runge-Kutta (RK4)

and RK5, fourth and fifth order algorithms. When it comes to modeling the dynamics

of the rabies transmission model, it has proven to be quite accurate.The beginning

circumstances are assumed to be random in sequence to produce a certain model

behavior. The population dynamics of the rabies population are shown in Fig. 3.

The results demonstrate that throughout the early years, the proportion of sensitive

animals rapidly decreases. The illness contracted by interacting with diseased

animals and the decline in vulnerable animals are the main causes of this decline.

Animals that are sensitive are less susceptible to contracting the virus when they

come into contact with infected individuals.
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(a) a (b) b

(c) c

Figure 2: Overall caption for the first set of subfigures.
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(a) a (b) b

(c) c

Figure 3: Overall caption for the second set of subfigures.

Regarding small βdh values (such as βdh = 0.1): Slow population decline in 

the susceptible group suggests a decreased rate of transmission. The number of 

vulnerable individuals gradually decreases as a result of the disease’s less effective 

spread. For large levels of βdh (such as βdh = 0.5), This suggests a faster rate of 

transmission. The item As a result, the illness spreads more quickly. As more 

people become exposed and sick, the number of susceptibles rapidly declines. The 

dynamics of disease propagation may be understood by examining the impact of 

various βdhvalues on the exposed population (E). This analysis reveals that the 

transmission rate is quite significant. Higher βdh values produce a quick increase in 

the number of exposed persons, resulting in a faster and more extensive epidemic, 

whereas lower βdh βdd and values cause the illness to spread more slowly. This 

emphasizes how crucial it is to use treatments meant to lower the rate of 

transmission
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in order to manage and lessen the effects of infectious illnesses. These results

underscore the importance of interventions aimed at reducing the transmission rate

βdh to control and mitigate the impact of infectious diseases in figure 4 and 3,

Measures such as vaccination, social distancing, wearing masks, and improving

hygiene can effectively lower βdh thereby reducing the spread of the disease. By

maintaining a lower βdh, it is possible to prevent a rapid and overwhelming outbreak,

allowing for better management of healthcare resources and minimizing the overall

impact on the population.

(a) a (b) b

(c) c

Figure 4: Overall caption for the figure

Effect of Vaccination: The vaccination procedure results in a notable decrease 

in the vulnerable population, according to the vaccination scenario see figure 5, and 

see figure 5, fewer people are vulnerable and because vaccinations are administered 

directly to individuals, the exposed and infected populations are often smaller in
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vaccination scenarios. In the vaccination scenario, there is a higher percentage of

recovered persons, suggesting that vaccination contributes to a greater number of

recovery cases. The vaccinated compartment, which is exclusive to the vaccination

scenario, illustrates how vaccination might lower the populations of exposed and

infected individuals. These findings demonstrate the value of vaccination in halting

the spread of infectious illnesses by lowering the proportion of vulnerable and

contagious people, which eventually results in fewer cases and a speedier rate of

population recovery. For example, α1 = 0.13 and α2 = 0.15 are the values of the

parameters α1 and α2 that correspond to the vaccination scenario. These metrics

stand for vaccination rates among the vulnerable population and vaccine efficiency,

respectively. Both α1 and α2 are 0 in the case of no immunization. This indicates

that there is no vaccination and that the system operates as though there are no

vaccination effects.

10. Numerical analysis

The numerical interpretation of model (1) using RK4 and the Matlab-coded

NSFD approach is the main topic of this section. As table 1 shows, a variety

of parameters together with their respective numerical values have been collected

from [2, 4]. Initially, we create the two epidemic model numerical approaches.

Next, using the graphs, we can monitor the dynamic behavior of MODEL (1) over

time t by numerical simulations. We also talk about the numerical outcomes.

10.1. RK4 scheme

In order to formulate an explicit numerical scheme for the RK4 approach [15-

18], the following presumptions must be made. S h(t) ≈ S n
h, Eh(t) ≈ En

h, Ih(t) ≈

In
h ,Vh(t) ≈ Vn

h ,Rh(t) ≈ Rn
h, S d(t) ≈ S n

d, Id(t) ≈ In
d ,Vd(t) ≈ Vn

d

k1 = h
[
Ah + α2Vn

h − (α1 + µh + βdhIn
d)S n

h

]
,
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w1 = h
[
βdhS n

hIn
d − (αh + δh + µh)En

h

]
,

m1 = h
[
α1S n

h − (α2 + µh)Vn
h ,

]
,

n1 = h
[
δhEn

h − µhRn
h,

]
,

o1 = h
[
Bd + ρdVn

d − (cd + µd + βddIn
d)S n

d

]
,

p1 = h
[
βddS n

dIn
d − (µd + md)In

d ,
]
,

q1 = h
[
βddS n

dIn
d − (µd + md)In

d

]
,

v1 = h
[
cdS n

d − (µd + ρd)Vn
d

]
,

k2 = h
[
Ah + α2

(
Vn

h
n1

2

)
−

(
α1 + µh + βdh

(
In
d +

q1

2

)
(S n

h +
k1

2
)
)]
,

w2 = h
[
βdh

(
S n

h +
k1

2

) (
In
d +

q1

2

)
− (αh + δh + µh)

(
En

h +
w1

2

)]
,

m2 = h
[
α1

(
S n

h +
k1

2

)
− (α2 + µh)

(
Vn

h +
n1

2

)]
,

n2 = h
[
α1

(
S n

h +
k1

2

)
− (α2 + µh)

(
Vn

h +
n1

2

)]
o2 = h

[
δh

(
En

h +
w1

2

)
− µh

(
Rn

h +
o1

2

)]
,

p2 = h
[
Bd + ρd

(
Vn

d +
n1

2

)
− (cd + µd + βdd

(
In
d +

q1

2
)S n

d +
p1

2

)]
,

q2 = h
[
βdd

(
(S n

d +
p1

2
)(In

d +
q1

2
)
)
− (µd + md)In

d ,
]
,

v2 = h
[
cd

(
S n

d +
p1

2

)
− (µd + ρd)

(
Vn

d +
v1

2

)]
,

Hence

S n+1
h = S n

h +
1
16

[k1 + 2k2 + 2k3 + 2k4 + 2k4 + 2k5 + 2k6 + k7 + k8] (37)

En+1
h = En

h +
1
16

[w1 + 2w2 + 2w3 + 2w4 + 2w4 + 2w5 + 2w6 + 2w7 + w8] (38)

In+1
h = In

h +
1
16

[m1 + 2m2 + 2m3 + 2m4 + 2m4 + 2m5 + 2m6 + 2m7 + m8] (39)
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Vn+1
h = In

h +
1
16

[n1 + 2n2 + 2n3 + 2n4 + 2n4 + 2n5 + 2n6 + 2n7 + n8] (40)

Rn+1
h = Rn

h +
1
16

[o1 + 2o2 + 2o3 + 2o4 + 2o4 + 2o5 + 2o6 + 2o7 + o8] (41)

S n+1
d = En

d +
1

16
[
p1 + 2p2 + 2p3 + 2p4 + 2p4 + 2p5 + 2p6 + 2p7 + p8

]
(42)

In+1
d = In

d +
1
16

[
q1 + 2q2 + 2q3 + 2q4 + 2q4 + 2q5 + 2q6 + 2q7 + q8

]
(43)

Vn+1
d = Vn

d +
1
16

[
j1 + 2 j2 + 2 j3 + 2 j4 + 2 j4 + 2 j5 + 2 j6 + 2 j7 + j8

]
(44)

10.2. NSFD schemne

We introduce a trustworthy numerical method in this subsection, which is based

on the Mickens created the non-standard finite difference (NSFD) methodology

[19]. This methodology finds several uses in the examination of numerous real-

world, practical issues that crop up in the engineering and mathematics disciplines.

We refer to [19, 24] for NSFD technique applications in various applied mathematics

domains. In order to provide the following in model (1) based on the first equation

in order to create an explicit numerical scheme for the NSFD method.

S h

dt
=

S n+1
h − S h

h
, S h(t) ≈ S n+1

h , Ih(t)S h(t) = In
hS n+1

h

from the 2nd equation of the model (1),

Eh

dt
=

En+1
h − Eh

h
, Eh(t) ≈ En+1

h , Ih(t)S h(t) = In
hS n+1

h

from the 3rd equation of the model (1),

Ih

dt
=

In+1
h − Ih

h
, Ih(t) ≈ In+1

h ,

from the 4th equation of the model (1), let

Vh

dt
=

Vn+1
h − Vh

h
,Vh(t) ≈ Vn+1

h , Eh(t) = En
h
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from the 5th equation of the model (1), let

Rh

dt
=

Rn+1
h − Rh

h
,Rh(t) ≈ Rn+1

h ,

from the 6Th equation of the model (1),

S d

dt
=

S n+1
d − S d

h
, S d(t) ≈ S n+1

d , Id(t)S d(t) = In
dS n+1

d

from the 7Th equation of the model (1),

Id

dt
=

In+1
d − Id

h
, Id(t) ≈ En+1

d , Ed(t) = En
d

from the 8Th equation of the model (1), let

Vd

dt
=

Vn+1
d − Vd

h
,Vh(t) ≈ Vn+1

d ,

using the above assumption the eight equation of the model (1), become, Thus,

S n+1
h =

S n
h + h(Ah + α2Vn

h )
1 + h(α2 + µh + βdhIn

d
(45)

En+1
h =

En
h + h(βdhIn

hS n
h)

(1 + h(αh + δh + µh)
(46)

In+1
h =

In
h + h(µh + mh

(1 + h(α2 + µh)
(47)

Vn+1
h =

Vn
h + h(α1S n

h + Vn
h )

1 + (α2 + µh)
(48)

Rn+1
h =

Rn
h + δhEn

h

1 + h(µh)
, (49)

S n+1
d =

S n
d + h(S dβd + ρdVn

d )

1 + h(cd + µd + βddIn
d)

(50)

In+1
d =

In
d + h(βddS n

d + In
d

1 + h(µd + md)
(51)

Vn+1
d =

Vn
d + h(cdS n

d + Vn
d

1 + h(µd + ρd)
(52)
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Theorem 10.1. The continuous model (1)’s equilibrium points (E0 and E1, respectively)

are preserved by the discrete scheme (29)–(35). In other words, the continuous

model’s endemic equilibrium, also known as the disease-free equilibrium point (1)

are the only fixed points in scheme (29)–(35). Furthermore, the NSFD scheme’s

equilibrium points and fixed points have the same stability properties.

10.3. Numerical results

The numerical interpretation of model (1) utilizing the Matlab-coded RK4

(21)–(28) and NSFD is presented in this section technique (29)–(35). Initially,

we compare the h = 1.0 discretization step size for the RK4 and NSFD approaches.

Both numerical methods are numerically Figs. 2-3 demonstrate that they are convergent

and converge to the real steady states (E0 and E1) of the continuous model (1),

respectively. Furthermore, RK4 and NSFD offer excellent solutions for h = 1.0

in the fundamental feasible region B. Crucially, for R0 < 1, the RK4 approach

produces positive solutions if we pick h = 1.5, moving away from the genuine

steady state and converges to the true steady state of E0. On the other hand, for

R0 > l, it wanders away from the genuine steady state and does not converge to

E1, leading to unanticipated negative solutions that are never found inside set B. In

contrast, the NSFD method yields positive solutions and converges to both E0 and

E1 when R0 < 1 (see Figs. no and no for comparison).
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(a) a (b) b

(c) c (d) d

Figure 5: Overall caption for the figure

Although extremely large or very tiny time steps may still have an impact 

on accuracy and stability, the approach is typically stable over a wide range of 

time steps. The code supplied selects a time step of dt = 0.01, which strikes a 

compromise between computing efficiency and precision.

Susceptible Humans (S h) : A comprehensive trajectory of susceptible humans 

across time will be provided by the RK4 approach. Depending on the settings, 

you may see variations in the amount of people that are vulnerable due to things 

like recovery and illness transmission rates. Other Variables: In a similar vein, the 

dynamics outlined by the model equations will cause variables such as exposed 

individuals (Eh), infected humans (Ih),and recovered humans (Rh), to alter. Some 

of the shortcomings of conventional techniques, such as RK4, are intended to be 

addressed by the Numerically Stable Finite Difference (NSFD) method, particularly
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with regard to stability and the treatment of stiff equations. Although the NSFD

implementation’s specifications aren’t disclosed, the following is what to generally

anticipate: Stability: Where standard approaches such as Euler or RK4 may struggle,

NSFD methods prove especially helpful for stiff systems. Even with longer time

periods, they can maintain stability and manage quick changes in variables more

effectively. Accuracy: Although NSFD techniques are stable, their accuracy may

not always match that of RK4, particularly if the discretization scheme is less

sophisticated. They make up for it, nonetheless, with increased stability in rigid

systems. RK4 is a fantastic choice. It’s well-established, accurate, and extensively

used in numerous applications. If you have unique demands relating to stability

or other features, NSFD would be worth studying further, but it requires careful

implementation.
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