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Introduction 

Calculus has been the main area of reform in 

collegiate mathematics programmes. In the 

discipline of linear algebra, however, a considerably 

more subdued reform effort has been going on for 

the past five years. In response to the worry that "the 

linear algebra curriculum at many schools does not 

adequately address the needs of the students it 

attempts to serve," the Linear Algebra Curriculum 

Study Group (LACSG) was established in January 

1990 (Porter, 1993, p. 41). They discovered that 

although there had been a sharp rise in demand for 

the course from "client disciplines such as 

engineering, computer science, operations research, 

economics, and statistics" (Porter, 1993, p. 41), the 

format and content had stayed the same. The typical 

introductory linear algebra course has been 

restructured as a result of their concerns about the 

topics covered, the emphasis on abstraction of 

concepts at the expense of real-world applications, 

and the apparent lack of technology used by 

disciplines that utilise the concepts of linear algebra. 

 

It is odd, considering the evolution of matrix theory 

over the years, that this focus is now diverging from 

determinant research. Tucker (1993) claims that 

Leibniz utilised determinants-not matrices-150 

years before J. J. Sylvester first used the name in 

1848. Determinants originated from the study of 

coefficients of systems of linear equations. The 

finding det(AB) = det(A) det(B) provided the 

essential  connection  between  the  recently  created 

 

 

 

 

matrix theory and the long-standing study of 

determinants. One of the fundamental qualities 

whose development and verification are being 

removed from the curriculum is this same result. 

 

All educational levels (K–12) incorporate the four 

core areas of problem solving, communication, 

reasoning, and connections, as outlined in the 

NCTM Curriculum Standards (1989). These themes 

are also present in their learning objectives, which 

state that students should "learn to value 

mathematics, to become confident in their 

mathematical abilities, to solve mathematical 

problems, to communicate mathematically, and to 

reason mathematically" (p. 5). "These goals imply 

that students should be exposed to numerous and 

varied interrelated experiences that foster a value for 

the mathematical enterprise, the development of 

mathematical habits of mind, and an appreciation of 

the role of mathematics in human affairs," the 

statement continues. "They also call for students to 

read, write, and discuss mathematics; they should 

conjecture, test, and build arguments about the 

validity of a conjecture; and they should be 

encouraged to explore, guess, and even make and 

correct errors so that they gain confidence in their 

ability to solve complex problems." It is possible to 

accomplish these objectives by studying linear 

algebra. Nevertheless, an applications-based 

approach is taking precedence over the material, 

which is rich in mathematical investigations, in the 

curriculum.  
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The emphasis in linear algebra was changed to a matrix-oriented course focusing on applications and cutting 
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pure and applied mathematics needs to have a solid understanding of finite vector spaces, linear 

transformations, and their extensions to function spaces". Determinants-more especially, the formulation and 

validation of the determinant's fundamental properties-are one area that is being underemphasized.  

 

Keywords: Linear Algebra, Architecture, Maths, Modern. 

Cosmos An International Journal of Art & Higher Education 

A Refereed Research Journal 

Vol 11/ No 1/ Jan-Jun 2022             ISSN: 2319-8966 

 

 

*Research Scholar, Kalinga University, Naya Raipur, Chhattisgarh, India.  

**Supervisor, Kalinga University, Naya Raipur, Chhattisgarh, India.  

. 



 

114 
 

Students' experience and maturity in mathematics 

can be improved by investigating characteristics that 

link ideas in linear algebra. It's surprising how 

slowly technology adoption has spread throughout 

college. But studies reveal that it enhances attitudes 

and academic performance in students. According to 

Peck et al. (1994), there was a considerable 

improvement in student achievement not only in the 

technology-enhanced course but also in succeeding 

non-technical courses. They discovered that by 

allowing pupils to concentrate on comprehending 

the issues and applying mathematics, technology use 

"allowed the students to develop their mathematical 

skills" (Peck, 1994, p.6). Quesada and Maxwell 

(1994) looked at the benefits and drawbacks of 

teaching pre-calculus with graphing calculators. 

When compared to students in a typical course 

utilising scientific calculators, they found that the 

usage of graphing calculators increased student 

achievement. Students in the experimental group 

indicated on a survey that they spent more time 

studying, had more freedom to explore, and had a 

better understanding of the material. Research by 

Guckin and Morrison (1991), Stiff et al. (1992), 

Peck et al. (1992), Quesada and Maxwell, and others 

clearly show that when students are taught using 

technology, they respond with a greater level of 

success and an increase in favourable attitudes. All 

of these scholars acknowledge, however, that their 

ability to teach students in a more conceptual, 

constructivist way and to add real-world 

applications that give themes significance comes 

from their use of technology. 

 

Compared to the 200 years that calculus has been 

taught, linear algebra is a relatively recent addition 

to the undergraduate mathematics curriculum. That 

being said, this does not lessen its importance in a 

mathematics programme. Actually, calculus 

frequently plays the role of a service course in linear 

algebra, a necessity that is growing quickly for other 

degree programmes. Applications for the linear 

algebraic methods can be found in a wide range of 

disciplines, including economics, engineering, 

physical science, social science, and archaeology, to 

mention a few. Many teachers have chosen to focus 

more on the practical applications of linear algebra 

rather than eliminating significant conceptual 

abstractions due to the inflow of students majoring 

in different degree programmes. There has also been 

a significant dilution in abstraction as a result of 

other departments opting to teach linear algebra in a 

different way. Math departments frequently decide 

to give "them what they want" and tone down their 

curriculum in response to "turf protection" in order 

to keep student enrollment high.  

 

It is regrettable to say the least that theory was 

reduced to a supporting role in the development of 

linear algebra. An essential course in an 

undergraduate mathematics programme is linear 

algebra. For many of the pupils, it is their first 

subject where they face challenges in maths. Future 

mathematical research in group and ring theory, 

combinatorics, and analysis will all build upon 

linear algebra. Therefore, in order to create further 

mathematical knowledge, students who are finishing 

linear algebra need to have a solid mathematical 

background and grasp of the relevant ideas. An 

instructor's challenge in each mathematics course is 

to strike a balance between the beauty and 

usefulness of mathematics. It is important to provide 

students with the chance to investigate topics in 

linear algebra that are abundant in linkages and 

applications. 

 

Literature Review 

In the Cobani (2021) year; Inverse scattering is 

currently receiving a great deal of attention from 

mathematicians who work with the theory of partial 

differential equations, and this field of study is 

consistently making progress. An inhomogeneous 

medium's ability to scatter light is highly 

problematic. We study the transmission eigenvalue 

matter corresponding to a new scattering problem in 

this paper. Unlike any other previously solved 

internal problem, the boundary conditions of this 

new scattering problem are unique. More precisely, 

we consider the case when the variation of the track 

of both fields is proportional to the normal 

derivative of the field, as opposed to dictating the 

difference Cauchy data on the boundary, which is 

the conventional approach for the problem. This is 

because the problem's classical version requires the 

existence of the difference Cauchy data on the 

border. Typical concerns related to the transmission 

eigenvalue problem (TEP) include the existence of 

the transmission eigenvalues, their discreteness, and 

the Fredholm condition as well as solvability. We 

discuss and offer solutions to all of these queries and 

problems related to an interior gearbox problem 

involving an inhomogeneous medium in this article. 

We apply the variational technique and a very 

important theorem regarding the existence of 

transmission eigenvalues to conclude that they do 

exist. Combined, these two instruments enable us to 

demonstrate the existence of transmission 

eigenvalues. The eigenvalues of the gearbox must be 

discrete in order to demonstrate that the problem can 

be solved because the interior gearbox scenario 

satisfies the Fredholm Alternative. This is a crucial 

phase in the procedure. Discreteness is necessary to 

guarantee that the reconstruction methods-which 

include linear sampling-succeed in reconstructing 

the scatterer within an inhomogeneous medium. 

This is due to the fact that discreteness a practical 

need. Transmission eigenvalues are significant 
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because they provide information about the 

composition of inhomogeneous medium. This is 

among the factors that make their existence so 

crucial. Transmission eigenvalues can be used to 

determine an object's index of refraction by 

combining them with observational data, as 

demonstrated by recent studies. This is on top of the 

theoretical importance of transmission eigenvalues 

in the context of reconstruction leading to inverse 

scattering theory and uniqueness. This is because it 

was discovered-a noteworthy discovery-that 

transmission eigenvalues could be inferred from 

recorded far field data. This serves as the basis for 

the argument. The interior problem is the most 

significant issue in inverse scattering. We will focus 

our efforts on solving the interior problem, which is 

the most significant obstacle offered by inverse 

scattering, after thoroughly examining the topic of 

the well-posedness underlying the direct issue, 

which must be completed before proceeding to the 

inverse issue. It is related to the transmission 

eigenvalues that the interior problem in an 

inhomogeneous medium is difficult to solve. The 

most concerning is the question of whether 

transmission eigenvalues are real or not. 

 

2021's Diao; This research investigates the intrinsic 

geometrical patterns for conductive transmission 

eigenfunctions. The geometric properties of internal 

transmission eigenfunctions were investigated first. 

It is shown which interior transmission 

eigenfunction has to have a locally vanishing value 

near a domain corner with an interior angle less than 

in two different examples. We significantly 

generalise and expand upon these findings in several 

ways. Firstly, we consider the conductive 

transmission eigenfunctions which also include the 

internal transmission eigenfunctions as a particular 

case. The findings are integrated into the geometric 

structures that this paper created to describe 

eigenfunctions of conductive transmission. Second, 

as long as the interior angle of the corner is not when 

the conductive transmission eigenfunctions satisfy 

specific approximation qualities of Herglotz 

functions, the vanishing characteristic of the 

eigenfunctions can be constructed for any corner. 

When the corner's inner angle is not, this can be 

done. That is to say, if the fundamental conductive 

transmission eigenfunctions can be approximated 

using a series of Herglotz functions under 

reasonable approximation rates, the disappearing 

feature will hold true as long as the corner 

singularity does not degrade. This is due to the fact 

that the sequence of Herglotz functions provides a 

more accurate approximation of the eigenfunctions 

than the Herglotz function sequence. Third, in the 

current study for the conductive transmission 

eigenfunctions, the regularity constraints for the 

interior transmission eigenfunctions are 

significantly relaxed. This was carried out to 

increase the study's applicability to actual situations. 

We have to develop technically new ways to obtain 

the geometric attributes of the conductive 

transmission eigenfunctions, and the analysis 

associated with such approaches is considerably 

more complex. In summary, we identify a unique 

recovery origin for the reverse problem related to 

transverse electromagnetic dispersion calculation 

through a single far-field evaluation within the 

simultaneous determination of the polygonal 

conductive obstacle and its surface conductive 

variable. This is an intriguing and practical 

application of the obtained geometric outcomes. The 

simultaneous determination of a polygonal 

conductive difficulty and its surface conductive 

variable is used to achieve this. 

 

Analysis 
Linear algebra is the study of mappings between 

vector spaces that maintain the vector-space 

structure, much like in the theory of other algebraic 

structures. A linear transformation, also known as a 

linear map, linear mapping, or linear operator, is a 

map given two vector spaces V and W over a field 

F. 

 
 

that works with scalar multiplication and addition: 

 

 
 

for each scalar a ∈ F and any vectors u,v ∈ V. 

 

Furthermore, given any vectors u, v ∈ V and scalars 

a, b ∈ F: 

 

 
 

Two vector spaces are said to be isomorphic when 

there is a bijective linear mapping between them, 

meaning that each vector in the second space is 

associated with exactly one in the first. From the 

perspective of linear algebra, two isomorphic vector 

spaces are "essentially the same" since an 

isomorphism maintains linear structure. Finding out 

if a mapping is an isomorphism or not is a 

fundamental question in linear algebra, which can be 

addressed by determining whether the determinant 

is nonzero. Finding a mapping's range (or image) 

and the set of items that are mapped to zero-referred 

to as the mapping's kernel-are of importance to 

linear algebraists if the mapping is not an 

isomorphism. 

 

The meaning of linear transformations is geometric. 

For instance, conventional planar mappings that 
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maintain the origin are represented as 2 × 2 real 

matrices. 

 

1. Subspaces, Span, and Basis 
Once more, linear algebra is interested in subsets of 

vector spaces that are also vector spaces; these 

subsets are referred to as linear subspaces, and their 

theories are analogous to those of other algebraic 

objects. Important examples of subspaces are the 

range and kernel of a linear mapping, which are 

sometimes known as the null space and the range 

space, respectively. Forming a subspace by using a 

linear combination of a set of vectors v1, v2,..., vk is 

another crucial method: 

 

 
 

where the scalars are a1, a2,..., ak. Their span, a 

subspace, is the set of all linear combinations of the 

vectors v1, v2,..., vk. 

 

The zero vector of V is a linear combination of any 

system of vectors with all zero coefficients. These 

vectors are linearly independent if this is the only 

way to represent the zero vector as a linear 

combination of v1, v2,..., vk. If a vector w in a set of 

vectors that spans a space is a linear combination of 

other vectors (i.e., the set is not linearly 

independent), then removing w from the set will not 

change the span. Because a linearly independent 

subset will exist and span the same subspace, a 

collection of linearly dependent vectors is therefore 

redundant. Thus, a linearly independent set of 

vectors spanning a vector space V-which we refer to 

as a basis of V-is the main object of our concern. A 

basis can be extended to any linearly independent set 

of vectors in V, and any set of vectors spanning 

across V contains a basis. It turns out that every 

vector space has a basis if we accept the axiom of 

choice; nevertheless, this basis might not even be 

constructible and might even be unnatural. As an 

example, the real numbers have a basis, which is 

viewed as a vector space over the rationals; 

nevertheless, no explicit basis has been built. 

 

A vector space V's dimension is the set of all two 

bases that have the same cardinality. The vector 

space dimension theorem provides a clear definition 

of a vector space's dimension. V is referred to as a 

finite-dimensional vector space if each basis of V 

contains a finite number of elements. Dim U ≤ dim 

V if V is finite-dimensional and U is a subspace of 

V. If V has U1 and U2 as subspaces, then 

 

 
 

Frequently, consideration is limited to vector spaces 

with a finite dimension. All vector spaces of the 

same dimension are isomorphic, according to a basic 

theorem of linear algebra, providing a simple 

method for characterising isomorphism. 

 

2. Matrix Theory 
One can create a coordinate system in V using a 

certain basis {v1, v2,..., vn} of V: the vector with 

coordinates (a1, a2,..., an) is the linear combination of 

 

 
 

While the linear independence of v1, v2,..., vn ensures 

that these coordinates are unique (i.e., there is only 

one linear combination of the basis vectors that is 

equal to v), the constraint that v1, v2,..., vn span V 

ensures that each vector v can be assigned 

coordinates. In this manner, V may be identified 

with the coordinate n-space Fn once a basis of a 

vector space V over F has been selected. According 

to this identification, the coordinate vector addition 

and multiplication of vectors in V correspond to the 

coordinate vector addition and multiplication of 

vectors in Fn. Moreover, if V and W are vector 

spaces over F that are n- and m-dimensional, 

respectively, and if the bases of V and W are fixed, 

then any linear transformation T: V → W may be 

represented as the matrix of T with regard to these 

bases, an m × n matrix A having entries in the field 

F. Similarity between two matrices is defined as 

encoding the same linear transformation in distinct 

bases. The study of matrices, which are concrete 

entities, takes the place of the axiomatically defined 

study of linear transformations in matrix theory. 

This key method sets linear algebra apart from 

theories of other algebraic structures, which are 

typically not amenable to such a detailed 

parameterization. 

 

The coordinate n-space Rn and a general finite-

dimensional vector space V differ significantly. A 

vector space V usually lacks a standard basis, 

whereas Rn has a standard basis {e1, e2,..., en}. 

Despite this, there are numerous bases that can be 

chosen from, all of which have an equal number of 

elements, equivalent to the dimension of V. 

 

The computation of determinants, a key idea in 

linear algebra, is one important use of matrix theory. 

Although determinants can be defined without 

regard to bases, they are typically introduced 

through a particular mapping representation; the 

determinant's value is independent of the basis. It 

turns out that the inverse of a mapping exists only if 

the determinant (i.e., every non-zero real or complex 

integer) does. The null space is nontrivial if the 

determinant is zero. A systematic method of 

determining if a set of vectors is linearly 

independent (we write the vectors as the columns of 

a matrix; if the determinant of that matrix is zero, the 

vectors are linearly dependent) is one of the various 
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uses for determinants. While determinants can also 

be used to solve linear equation systems (see 

Cramer's rule), Gaussian elimination is a faster 

approach in practical applications. 

 

Conclusion 
For those who would like a copy, there is a module 

that walks students through the development of the 

concept of determinants-a topic that has been less 

stressed recently in most introductory linear algebra 

courses-and focuses on connecting the determinant 

of a matrix with other important concepts in linear 

algebra, like inverses, gaussian elimination, 

eigenvalues, and eigenvectors. (The postal and 

email addresses can be found at the conclusion of 

this article.) The study is included in the module, and 

a synopsis of the module's contents is provided 

below. 

This curriculum module's overarching goals are to 

give students the chance to investigate, hypothesise, 

and prove hypotheses; engage with peers; and see 

examples that demonstrate how well appropriate 

technology use can be used to explore and develop 

mathematical concepts. 

 

In this, the people learn about the determinant as a 

function that transfers the set of real numbers to a 

subset of all matrices having real number entries. 

Prior to anything else, the students need to explain 

the subset of matrices that make up the function's 

domain. Using a graphing calculator (TI-81, 82, or 

85), users may determine the determinant of any 

matrix given a few instances of matrices. The 

absence of a determinant in a matrix indicates that it 

is beyond the function's scope. They will utilise the 

calculator to investigate basic cases (such as a 2 x 2 

case) after describing the domain of the determinant 

function. The relationship between the determinant 

and the matrix's entries will be revealed to the 

student. The students will investigate specific matrix 

types (such as triangular or diagonal) in order to 

come up with a technique for determining the 

determinants for these types of matrices once they 

have developed a "formula" for determining the 

determinant of a 2 x 2 matrix. 
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