Analysis of molecular chaperones in differentiating storage root compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas)

Authors

  • Velumani Ravi ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
  • Senthil kumar K Muthusamy ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
  • Saravanan Raju ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
  • S K Chakrabarti ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India

DOI:

https://doi.org/10.48165/

Keywords:

ClpATPase, HSP20, HSP90, Molecular chaperones, Storage root, Sweet potato

Abstract

The differential expression pattern of molecular chaperones genes was studied in developing storage and fibrous root tissues of sweet potato [Ipomoea batatas (L.) Lam.] using hybridization array. Out of 121 chaperone genes, 76 and 45 genes displayed more than 1.5-fold induced and reduced expression, respectively during the initial storage root development as compared to the non-tuber forming fibrous root of sweet potato. The differentially expressed genes belong to different chaperone family included DNAJ, HSP90, HSP100/ClpATPase, HSP20, families etc. These differentially expressed chaperones are known to play an important role in hormone signalling, nucleosome remodelling, protein import, protein folding and proteasomal degradation. Thus, our study shows the functional role of molecular chaperones in development of storage-roots of sweet potato, providing further scope for chaperone mediated functional genomics studies and CRISPER-mediated breeding of storage root development in sweet potato. 

Downloads

Download data is not yet available.

References

Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T and Nakano T. 2013. A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signalling. Planta 237(6): 1509-25.

D'Alessandro S, Golin S, Hardtke C S, Lo Schiavo F and Zottini M. 2015. The co-chaperone p23 controls root deve lopment through the modulation of auxin distribution in the Arabidopsis root meristem. J. Exp. Bot. 66(16): 5113-22.

di Donato M and Geisler M. 2019. HSP 90 and co-chaperones: A multitaskers' view on plant hormone biology. FEBS letters. doi:10.1002/1873-3468.13499.

Flores-Pérez Ú and Jarvis P. 2013. Molecular chaperone involvement in chloroplast protein import. Biochim. Biophys. Acta. 1833(2): 332-40.

Geng M T, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L and Wang Y L. 2017. Isolation and Characterization of Ftsz Genes in Cassava. Genes. 8(12): 391. doi:10.3390/genes8120391.

Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sasamoto S, Kohara M and Kishida Y. 2015. Survey of genome sequences in a wild sweet potato, Ipomoea trifida (HBK) G. Don. DNA Res. 22(2): 171-79.

Jeng W, Lee S, Sung N, Lee J and Tsai F T. 2015. Molecular chaperones: guardians of the proteome in normal and disease states. F1000 Research 4: 1448.

Kalidhasan N, Joshi D, Bhatt T K and Gupta A K. 2015. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. Physiol. Mol. Biol. Plants 21(4): 491-503.

Katiyar A, Smita S, Muthusamy S K, Chinnusamy V, Pandey D M and Bansal K C. 2015. Identification of novel drought responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front. Plant Sci. 6: 506. doi:10.3389/fpls.2015. 00506.

Kim Y H, Kim M D, Park S C, Yang K S, Jeong J C, Lee H S and Kwak S S. 2011. SCOF-1-expressing transgenic sweet potato plants show enhanced tolerance to low-temperature stress. Plant Physiol. Biochem. 49(12): 1436-41.

Lenka S K, Muthusamy S K, Chinnusamy V and Bansal K C, 2018. Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol. Biotechnol. 60(5): 350-61.

Lenka S K, Singh A K, Muthusamy S K, Smita S, Chinnusamy V and Bansal K C. 2019. Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance. Funct. Plant Biol. 46(5): 482-91.

Ma J, Liu Y, Zhou W, Zhu Y, Dong A and Shen W H. 2018. Histone chaperones play crucial roles in maintenance of stem cell niche during plant root development. Plant J. 95(1): 86-100.

Mukherjee A, Naskar S K, Ray R C, Pati K and Mukherjee A, 2015. Sweet Potato and Taro Resilient to Stresses: Sustainable Livelihood in Fragile Zones Vulnerable to Climate Changes. J. Environ. Sociobiol. 12: 53-64.

Muthusamy S K, Dalal M, Chinnusamy V and Bansal K C. 2016. Differential regulation of genes coding for organelle

and cytosolic ClpATPases under biotic and abiotic stresses in wheat. Front Plant Sci. 7: 929. doi: 10.3389/fpls.2016. 00929.

Muthusamy S K, Dalal M, Chinnusamy V and Bansal K C. 2017a. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J. Plant Physiol. 211: 100-13.

Muthusamy S K, Sivalingam P N, Sridhar J, Singh D, Haldhar S M and Kaushal P 2017b. Biotic stress inducible promoters in crop plants-a review. J. Agric. Ecol. 4: 14-24.

Nazarian-Firouzabadi F and Visser R G. 2017. Potato starch synthases: functions and relationships. Biochem Biophys Rep. 10: 7-16.

Niu S, Li X Q, Tang R, Zhang G, Li X, Cui B, Mikitzel L and Haroon M. 2019. Starch granule sizes and degradation in sweet potatoes during storage. Post harvest Biol. Tec. 150: 137-47.

Petti C, Nair M and DeBolt S. 2014. The involvement of J protein AtDjC17 in root development in Arabidopsis Front. Plant Sci. 5: 532. doi: 10.3389/fpls.2014.00532.

Pulido P and Leister D. 2018. Novel DNAJ-related proteins in Arabidopsis thaliana. New Phytologist 217(2): 480-90. Ravi V, Chakarabarti S K, Saravanan R, Makeshkumar T and Sreekumar J. 2016. Differential gene expression signatures of Small Auxin Up-Regulated RNA (SAUR) and Gretchen Hagen 3 (GH3) genes in storage root as compared to non tuber forming fibrous root of sweet potato (Ipomoea batatas) J. Root Crops 42(1): 14-21.

Ravi V, Chakrabarti S K, Makeshkumar T and Saravanan R. 2014. Molecular regulation of storage root formation and development in sweet potato. Horticultural Reviews 42: 157- 206.

Ravi V, More SJ, Saravanan R, Nair P K and Byju G. 2018. Evaluation of photosynthetic effeciency of elephant-foot yam (Amorphophallus paeoniifolius) to photon flux density and elevated CO2. Current Horticulture 6(1): 55-63.

Remesh K R, Byju G, Soman S, Raju S and Ravi V. 2019. Future changes in mean temperature and total precipitation and climate suitability of yam (Dioscorea spp.) in major yam-growing environments in India. Current Horticulture 7(1): 28-42.

Singh B. 2013. Protected cultivation in India: challenges and strategies. Current Horticulture 1(2): 3-6.

Tanaka M. 2016. Recent progress in molecular studies on storage root formation in sweet potato (Ipomoea batatas). Japan Agr. Res. Q. 50: 293-99.

Tao X, Gu Y H, Wang H Y, Zheng W, Li X, Zhao C W and Zhang Y Z. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PloS one 7(4): e36234.doi: 10.1371/journal.pone.0036234.

Tripathi P C and Yogeesha H S. 2018. Management of genetic resources of perennial horticultural crops: a review. Current Horticulture 6(1): 3-14.

Trösch R, Mühlhaus T, Schroda M and Willmund F. 2015. ATP-dependent molecular chaperones in plastids-More complex than expected. Biochim. Biophys. Acta 1847(9): 872-88.

Published

2024-02-16

How to Cite

Analysis of molecular chaperones in differentiating storage root compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas) . (2024). Current Horticulture, 8(2), 51–56. https://doi.org/10.48165/