Exploring microbial community diversity of mango leaf compost

Authors

  • Neelima Garg ICAR-Central Institute for Subtropical Horticulture, Lucknow 226 101, India
  • Balvindra Singh ICAR-Central Institute for Subtropical Horticulture, Lucknow 226 101, India
  • Supriya Vaish ICAR-Central Institute for Subtropical Horticulture, Lucknow 226 101, India
  • Sanjay Kumar ICAR-Central Institute for Subtropical Horticulture, Lucknow 226 101, India
  • Sanjay Arora ICAR-CSSRI Regional Research Station, Lucknow 226002, India

DOI:

https://doi.org/10.48165/

Keywords:

Mango leaf, Compost, Metagenome, Bacteria, Fungi, Operational taxonomic units

Abstract

A microbial consortium of 6 bacterial (Lactobacillus sp., Acetobacter sp., Saccharomyces sp., Bacillus sp., Pseudomonas sp. and Microascus sp.) and 5 fungal isolates (Aspergillus niger, A. oryzae, Fusarium solani, Trichoderma viridae and Penicillium citrinum), isolated from degrading organic substrates and having high degradative enzyme activities, was used for composting of mango leaves. It took one month for complete composting. The ready compost was subjected to physico-chemical, microbial and metagenomic analyses. The culturable bacterial and fungal isolates were purified and maintained on nutrient agar and potato dextrose agar slants and identified using 16S rDNA and ITS region sequencing. Molecular identification of cultured bacteria reflected the dominance of Bacillus subtilis along with Bacillus sp. and Microbacterium sp. The fungal isolates included Trichoderma sp,. Aspergillus niger, Acremonium sclerotigenum, Alternaria sp., Trichoderma sp. and Geotrichum candidum. Metagenomic analysis of mango (Mangifera indica) leaf compost resulted in 22842 number of total operational taxonomic units (OTU). At phylum level, 35% and 24% of OTUs were assigned with Ascomycota and Basidiomycota respectively. Rest belonged to unidentified phyla. At class level, 25% and 24% of OTUs were assigned with Sordariomycetes and Agaricomycetes, respectively. At genus level, 12% and 10% of OTUs were assigned with Coprinus and Zopfiella, respectively. The study indicated that despite the addition of microbial consortium, during the process of composting, microbes are coming from the environment which are helping in composting process. 

Downloads

Download data is not yet available.

References

Andrews S. 2017. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics. babraham.ac.uk/projects/fastqc/. Accessed 3 May, 2017. Antunes, L P, Martins L F, Pereira R V, Thomas A M, Barbosa

D, Lemos L N and Setubal J C. 2016. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Scientific Reports 6(1): doi:10.1038/srep38915.

Association of Official Analytical Chemists (18th edition). 2005. Official Method, Association of Official Analytical Chemists, Arlington, USA.

Benson H J. 2002. Microbiological applications. 8th ed. Bacterial population counts. Mc Graw Hill, New York, ISBN 0-07- 231889-9, p. 87.

Das P, Ravindran R, Deka D, Jawed M, Das D and Goyal A. 2013. Bioethanol production fromleafy biomass of mango (Mangifera indica) involving naturally isolated and recombinant enzymes. Preparative Biochemistry and Biotechnology 43(7): 717-734. doi:10.1080/10826068.2013. 773342.

DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, et al. 2006. Greengenes, a Chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied Environmental Microbiology 72(7): 5069-5072. DOI:10.1128/AEM.03006-05.

Edgar R C, Haas B J, Clemente J C, Quince C and Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194-2200. doi: 10.1093/ bioinformatics/btr38.

Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor 26: 2460-1https://doi.org/ 10.1093/bioinformatics/btq461.

Edgar R C. 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 81257. https://doi.org/10.1101/081257.

Ewels P, Magnusson M, Lundin S and Käller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinfor 32: 3047-8. doi: 10.1093/ bioinformatics/btw354.

Faria L N, Donato S L R, Santos M R D and Castro L G. 2016. Nutrient contents in "Tommy Atkins" mango leaves at flowering and fruiting stages. Engenharia Agrícola, 36(6): 1073- 1085. doi:10.1590/1809-4430-eng.agric.v36n6p1073- 1085/2016.

Garg N and Mohd A. 2010. Mango peel as substrate for production of extra cellular polygalacturonase from Aspergillus fumigatus, Ind. J. Horti. 67(1): 140-143.

Hankin L, Poincelot R P and Anagnostakis S L. 1975. Microorganisms from composting leaves: Ability to produce extracellular degradative enzymes. Microb Ecol 2: 296-308. https://doi.org/10.1007/BF02011649.

Ke G R, Lai C M, Liu Y Y and Yang S H. 2010. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost. Bioresour Technol. 101: 7424-7431.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M and Glöckner F O. 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next generation sequencing-based diversity studies. Nucleic Acids Research 41(1): e1-e1. doi:10.1093/nar/gks808

Kõljalg U, Nilsson R H, Abarenkov K, Tedersoo L, Taylor A F S, Bahram M et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol 22: 5271- 7doi: 10.1111/mec.12481.

Langille M G I, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 8: 1-10. doi: 10.1038/ nbt.2676.

Londhe M N, Sethy S K, Shettigar S K and Ghosh S B. 2019. Metagenomics and physico-chemical analysis of the active mesophilic and mature phases of a fast composting system. Current Science 117(11): 1842-54.

Martins L F, Antunes L P, Pascon R C, de Oliveira J C F, Digiampietri L A, Barbosa D, et al. 2013. Metagenomic Analysis of a Tropical Composting Operation at the São Paulo Zoo Park Reveals Diversity of Biomass Degradation Functions and Organisms. PLoS ONE 8(4): e61928. doi:10.1371/journal.pone.0061928.

Mello B L, Alessi A M, McQueen-Mason S, Bruce N C and Polikarpov I. 2016. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia. Scientific Reports 6(1): doi:10.1038/srep38781.

Miller G L. 1972. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Ana. Chem. 3: 426-428. Nakamura K, Haruta S, Nguyen H L, Ishii M and Igarashi Y. 2004. Enzyme production-based approach for determining the functions of microorganisms within a community. Appl Environ Microbiol. 70(6): 3329-3337. doi:10.1128/ AEM.70.6.3329-3337.

Neher D A, Weicht T R, Bates S T, Leff J W and Fierer N. 2013. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times. PLoS ONE 8(11): e79512. doi:10.1371/journal.pone. 0079512.

Pham V H T and Kim J. 2012. Cultivation of unculturable soil bacteria. Trends in Biotechnology 30(9): 475-484. doi:10. 1016/j.tibtech.2012.05.007.

Schloss P D and Handelsman J. 2006. Introducing SONS, a tool for operational taxonomic unit based comparisons of microbial community memberships and structures. Applied and Environmental Microbiology 72: 6773-6779. doi:

1128/AEM.00474-06.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. 2011. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mole Bio Evolution 28: 2731-2739.

Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I et al. 2015. Shotgun metagenomes and multiple primer pair barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10: 1-43. doi : http://doi.org/10.3897/mycokeys.10.4852.

Vargas-García M C, Suárez-Estrella F, López M J and Moreno J. 2007. Effect of inoculation in composting processes: modifications in lignocellulosic fraction. Waste Manag 27: 1099- 1107.

Vargas-Garcia MC, Suárez-Estrella F, López M J, Moreno J. 2010. Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Management 30: 771-778.

Wang C, Dong D, Wang H. et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decom position. Biotechnol Biofuels 9: 22. doi.org/10.1186/s13068- 016-0440-2.

Wood T M and Bhat K M. 1988. Methods for measuring cellulase activities. In: Methods of enzymology biomass part A-cellulose hemicelluloses, Academic press, New York 160: 87-112.

Xi B, Zhang G and Liu H. 2005. Process kinetics of inoculation composting of municipalsolid waste. J Hazard Mater 124: 165-172.

Yang Y, Zhang S, Li N, Chen H, Jia H, Song X and Zhang, S. 2019. Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Scientific Reports 9(1): doi:10.1038/s41598-019-42667-z.

Zhou M, Guo P, Wang T, et al. 2017. Metagenomic mining pectinolytic microbes and enzymes from an apple pomace adapted compost microbial community. Biotechnol Biofuels 10: 198. https://doi.org/10.1186/s13068-017-0885-y.

Published

2024-02-16

How to Cite

Exploring microbial community diversity of mango leaf compost . (2024). Current Horticulture, 9(1), 27–35. https://doi.org/10.48165/