Equilibrium Studies on Sorption of Basic Fuchsin Dye Using Living Biomass of Aspergillus niger and Humicola grisea

Authors

  • Neetu Kumari Department of Biotechnology, Mewar University, Gangrar, Chittorgarh, Rajasthan 312901, India
  • B L Yadav Department of Botany, Mewar University, Gangrar, Chittorgarh, Rajasthan 312901, India
  • Pradip Kumar Department of Biotechnology, C.C.S. University, Meerut, Uttar Pradesh 200005, India

DOI:

https://doi.org/10.48165/

Keywords:

Textile wastewaters, biosorption, basic fuchsin dye, fungal biomass, adsorption isotherms

Abstract

Textile effluents are among the most difficult to treat  wastewaters, due to their considerable amount of  recalcitrant and toxic substances. Fungal biosorption is  viewed as a valuable additional treatment for removing  pollutants from textile wastewaters. In the present study  fungal biomass of Aspergillus niger and Humicola griseawere used for the biosorption of basic fuchsin dye from  aqueous solutions. The maximum biosorption percentage  of 46.09% and 32.66% were observed at 100 ppm  concentration of dye by Aspergillus niger and Humicola grisea, respectively. The biosorption capacity of basic  fuchsin dye by Aspergillus niger biomass was more  efficient than the biomass of Humicola grisea. Adsorption  of dye by Aspergillus niger followed Langmuir isotherm  model while by Humicola grisea followed Freundlich  isotherm model. 

References

Acemioglu, B., Kertmen, M., Digrak, M. and A. Hakki (2010).Use of Aspergillus wentii for biosorption of methylene blue from aqueous solution. African J. Biotechnol.9 (6): 874-881. 2. Almeida, E.J.R. and C.R. Corso (2014). Comparative study of toxicity of azo dye Procion Red MX 5B following biosorption and biodegradation treatments with the fungi Aspergillu sniger and Aspergillus terreus. Chemosphere, 112: 312-317.

Anastasi, A., Pirigione, V., Casieri, L. and G.C. Varese (2009). Decolourisation of model and industrial dyes by mitosporic fungi in different culture condition. World J. Microbiol.Biotechnol. 25:1363-1374.

Aretxage, A., Romero, S., Sarr, M. and T. Vincent (2001). Adsorption step in the biological degradation of a textile dye.Biotechnol.Prog.17: 664-668.

Bankole, P.O., Adekunle, A.A., Obidi, O.F, Chandanshive, V.V. and S.P. Govindwar (2018). Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus Peyronellaea prosopidis. Sustainable Env. Res. 1-9. https://doi.org/10.1016/j.serj.2018.03.001.

Bulut, Y., Akasa, C. and H. Aydin (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:1-10.

Chan, L.S., Cheung, W.H. and G. McKay (2008). Adsorption of acid dyes by bamboo derived activated carbon. Desalination 218(1-3): 304-312.

De Castro, K.C., Cossolin, A.S., dos Reis, H.C.O. and E.B. de Morais (2017). Eduardo Beraldo Biosorption of anionic textile dyes from aqueous solution by yeast slurry from brewery. Braz. Arch. Biol. Technol. 60. http://dx.doi.org/10.1590/1678-4324-2017160101.

Eichlerova, I., Homolka, L. and F. Nerud (2006). Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Biores. Technol.97: 2153-2159.

El-Geundi, M.S., Nassar, M.M., Farrag, T.E. and M.H. Ahmed (2012).Removal of an insecticide (methomyl) from aqueous solutions using natural clay. Alexandria Eng. J. 51: 11-18. 11. Ellis, M.B. (1971). Dematiaceous Hyphomycetes. Common wealth Mycological Institute, Kew, Surrey, England.

Freundlich, H (1906). Over the adsorption in solution.J. Phys. Chem.57: 385-470. 13. Fu, Y and T. Viraraghavan (2000). Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Quality Res. J. Canada35: 95-111.

Fu, Y. and T. Viraraghavan (2001). Fungal decolorization of dye wastewaters: a review. Bioresour. Technol.79: 251–262.

Fu, Y. and T. Viraraghavan (2002b). Removal of Congo red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res.7: 239-247.

Gadd, M.G. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotecnol. 84: 13-28.

Gallagher, K.A., Healy, M.G. and S.J. Allen (1997). Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. In: Global Environmental Biotechnology (Wise, D.L., Ed.). Elsevier, London, pp: 27-50.

Gilman, J.C. (1957). A Manual of Soil Fungi. Iowa State University Press, USA. 19. Grainger, S., Fu, G.Y. and E.R. Hall (2011). Biosorption of colour imparting substances in biologically treated pulp mill effluent using Aspergillus niger fungal biomass. Water Air Soil Pollut.217: 233-244.

Gunturu, B., Palukuri, N.R. and R. Sahadevan (2018). Decolorisation of basic textile dye from aqueous solutions using a biosorbent derived from Thespesia populnea used biomass. Materials Sci. Eng.330: 012036 doi:10.1088/1757-899X/330/1/012036.

Karthikeyan, K., Nanthakumar, K. and P. Lakshmanaperumalsamy (2009). Kinetic and equilibrium studies on in situ biosorption of Reactive Blue 140 dye by live biomass preparation of Aspergillus niger HM11. Global J. Environ. Res.3: 264-273.

Kaushik, P. and A. Malik (2009). Fungal dye decolourization: Recent advances and future potential. Env. Int. 35: 127-141.

Khan, T.A., Ali, I., Singh, V.V. and S. Sharma (2009). Utilization of fly ash as low–cost adsorbent for the removal of methylene blue, malachite green and rhodamine B dyes from textile wastewater. J. Environ. Prot. Sci. 3:11-22.

Khandare, R.V., Kabra, A.N., Kadam, A.A. and S.P. and S.P. Govindwar (2013).Treatment of dye containing wastewaters by a developed lab scale phytoreactor and enhancement of its efficacy by bacterial augmentation. Int. Biodeter. Biodegr.78: 89-87.

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum.J.Am. Chem. Soc.40 (9):1361–1403.

Mathur, M., Gola, D., Panja, R., Malik, A. and S.Z. Ahammad (2018). Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.Env. Sci. Pollut. Res. 25(1): 345-352.

Nagamani, A., Kunwar, I.K. and C. Manoharachary (2006).Handbook of Soli Fungi. I. K. International Pvt. Ltd., New Delhi, Mumbai, Bangalore.

O’Mahony, T., Guibal, E. and J.M. Tobin (2002).Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microb. Technol.31: 456-463.

Oliveira, D.P., Carneiro, P.A., Sakagami, M.K., Zanoni, M.V.B. and G. de Aragao Umbuzeiro (2007).Chemical characterization of a dye processing plant effluent—Identification of the mutagenic components. Mutat. Res. 626: 135-142.

Pandey, A., Singh, P. and L. Iyengar (2007). Bacterial decolorization and degradation of azo dyes. Int. Biodeter. Biodegr.59:73-84.

Rane, N.R., Chandanshive, V.V., Khandare, R.V., Gholave, A.R., Yadav, S.R. and S.P. Govindwar (2014). Green remediation of textile dyes containing wastewater by Ipomoea herderifolia L. RSC Adv.4: 36623-36632.

Reife, A. and H.S. Freeman (1996). Carbon Adsorption of Dyes and Selected Intermediates. Wiley, New York.

Rybczynska-Tkaczyk, K. and T. Kornillowicz-Kowalska (2016).Biosorption optimization and equilibrium isotherm of industrial dye compounds in novel strains of microscopic fungi. Int. J. Environ. Sci. Technol. 13: 2837-2846.

Sadhasivam, S., Saritha, E., Savitha, S. and K. Swaminathan (2005).Comparison of the efficacy of live and autoclaved mycelium of Trichoderma harzianum on the removal of Trypan Blue. Bull. Environ. Contam.Toxicol.75: 1046-1053.

Sadhasivam, S., Savitha, S. and K. Swaminathan (2007). Exploitation of Trichoderma harzianum mycelia waste for the removal of rhodamine 6G from aqueous solution. J. Environ. Manag.85:155- 161.

Sadhasivam, S., Savitha, S., Swaminathan, K. and F.H. Lin (2010). Biosorption of RBBR by Trichoderma harzianum WL1 in stirred tank and fluidized bed reactor models. J. Taiwan Ins. Chem. Eng.41: 326-332.

Santhi, T. and S. Manonmani (2009). Uptake of cationic dyes from aqueous solution by biosorption using granuilized Annonasquemosa seed.E-J Chem. 6(4): 1260-1266. 38. Seyis, I. and T. Subasioglu (2008). Comparison of live and dead biomass offungi on decolorization of methyl orange. African J. Biotechnol.7: 2212-2216.

Souzaa, P.S.C., Santosb, J., Souzac, A.R., Spessatoa, L., Pezotia, O., Alvesb, H.J., Colautod, N.B., Almeidaa, V.C. and D.C. Dragunski (2018). Biosorption of reactive red-120 dye onto fungal biomass of wild Ganoderma stipitatum. Desalination and Water Treatment102: 280–288.

Tan, I.A., Ahmad, A.L. and B.H. Hameed (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154: 337-346.

Vijayaraghavan, K., Lee, M.W. and Y.S. Yun (2008). A new approach to study the decolorization of complex reactive dye bath effluent by biosorption technique. Bioresource Technol. 99: 5778-5785. 42. Xin, B., Chen, G. and W. Zheng (2010). Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism. Water Res.44: 3565-3572.

Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q. and Y. Zhau (2011). Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW01: kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresour.Technol.102: 828-834.

Zhou, J.L. and C.J. Banks (1991). Removal of humic acid fraction by Rhizopus arrhizus: uptake and kinetic studies. Environ. Technol. 12: 859-869.

Published

2018-06-05

How to Cite

Equilibrium Studies on Sorption of Basic Fuchsin Dye Using Living Biomass of Aspergillus niger and Humicola grisea . (2018). Bio Science Research Bulletin, 34(1), 19–26. https://doi.org/10.48165/