Characterization and Identification of Atypical Yeast Species Causing Fungemia by MALDI-TOF MS Technique
DOI:
https://doi.org/10.48165/Keywords:
MALDI-TOF MS, Fungemia, Candidemia, Rare yeast, Candida species, Rapid diagnosisAbstract
The incline healthcare services and improvements in technology have elevated resistance or confrontation amongst microorganisms. The microbial community has witnessed evolution by emerging variant yet similar strains which are hard to detect and treat. An upsurge in drug resistance has hit at last; overuse of drugs should be prohibited otherwise the future is about to come when there will be no antibiotic left to control an illness. Prescription of suitable drugs must be mandatory following accurate diagnostics to the disease causative agents or factors. The Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) represents new era of diagnostics and medical microbiology. This study focus on utilization of MALDI-TOF MS technique for characterization and identification of rare yeast species as clinical isolates screened from critically ill patients with fungal infection. The commencement of antifungal resistance in a wide spectrum of atypical yeasts causing fungemia in several hospitals of India is worrisome. The rising of hospital patients with compromised immunity are giving way to pathogenic fungi leading to death of thousands patients. At lower differential neutrophills count, the invasion of uncommon yeast Candida albicans (Fungi: Saccharomycetaceae) be able to root a systemic infection lead to surplus growth of pathogenic rare yeasts in many organs, and possibly fatal. At this stage, physicians’ often recommend anti-fungal drugs to keep the controlled yeast populace in patients. But over the time, main challenge to medical experts during treatment is the development or emergence of resistance in rare yeast species against the prescribed drugs, insisting medical and pharmaceutical scientists to design and formulate more potent drugs and device rapid, truthful diagnostic techniques.
References
Aguilar G., Delgado C., Corrales I., Izquierdo A., Gracia E., Moreno T., Romero E., Ferrando C., Carbonell J.A., Borrás R., Navarro D. and Belda F.J. (2015). Epidemiology of invasive candidiasis in a surgical intensive care unit: An observational study. BMC Res. Notes., 29(8): 491.
Ahmad, S. and Khan, Z. (2012). Invasive candidiasis: A review of nonculture-based laboratory diagnostic methods. Indian J. Med. Microbiol., 30: 264–269.
Atici S., Soyal A., Cerit K.K., Yilmaz S., Aksu B., Kiyan G. and Bakir M. (2017). Catheter-related Saccharomyces cerevisiae fungemia following Saccharomyces boulardii probiotic treatment: In a child in intensive care unit and review of the literature. Med. Mycol. Case Rep., 15: 33–35.
Badiee P. and Hasehemizadeh Z. (2014). Opportunistic invasive fungal infections: Diagnosis and clinical management. Indian J. Med. Res., 139(2): 195–204.
Bassetti M., Poulakou G., Ruppe E., Bouza E., Van Hal S.J. and Brink A. (2017). Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med., 43(10): 1464–1475.
Bassetti M., Righi E., Costa A., Fasce R., Molinari M.P., Rosso R. and Viscoli C. (2006). Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect. Dis., 6(1): doi:10.1186/1471-2334-6-21
Boktour M., Kontoyiannis D.P., Hanna H.A., et al. (2004). Multiple-species candidemia in patients with cancer. Cancer, 101: 1860–1965.
Clark A.E., Kaleta E.J., Arora A. and Wolk D.M. (2013). Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev., 26(3): 547–603.
Clerc O., Prodhom G., Vogne C., Bizzini A., Calandra T. and Greub G. (2012). Impact of Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry on the clinical management of patients with gram-negative bacteremia: A prospective observational study. Clin. Infect. Dis., 56(8): 1101–1107.
Coleman D.C., Sullivan D.J., Bennett D.E., Moran G.P., Barry H.J. and Shanley D.B. (1997). Candidiasis: The emergence of a novel species, Candida dubliniensis. AIDS, 11: 557–567. 11. Dasgupta S., Das S., Chawan N.S. and Hazra A. (2015). Nosocomial Infections in the Intensive Care Unit: Incidence, risk factors, outcome and associated pathogens in a public tertiary teaching hospital of Eastern India. Indian J. Crit. Care Med., 19(1): 14–20.
Deorukhkar S.C. and Roushani S. (2018). Identification of Candida species: Conventional methods in the era of molecular diagnosis. Ann. Microbiol. Immunol., 1(1): 1–6.
Dudoignon E., Alanio A., Anstey J., Depret F., Coutrot M., Fratani A., Jully M., Cupaciu A., Chaussard M., Oueslati H., Ferry A., Benyamina M., de Tymowski C., Boccara D., Serror K., Chaouat M., Mimoun M., Lafaurie M., Denis B., Gits-Muselli M., Bretagne S., Mebazaa A., Legrand M. and Soussi S. (2019). Outcome and potentially modifiable risk factors for candidemia in critically ill burns patients: A matched cohort study. Mycoses., 62(3): 237–246.
Dufresne S.F., Marr K.A., Sydnor E., Staab J.F., Karp J.E., Lu K., Zhang S.X., Lavallee C., Perl T.M. and Neofytos D. (2014). Epidemiology of Candida kefyr in patients with hematologic malignancies. J. Clin. Microbiol., 52(6): 1830–1837.
Dunham S.J., Ellis J.F., Li B. and Sweedler J.V. (2016). Mass spectrometry imaging of complex microbial communities. Acc. Chem. Res., 50(1): 96–104.16. Enache-Angoulvant A. and Hennequin C. (2005). Invasive Saccharomyces infection: A comprehensive review. Clin. Infect. Dis., 41(11): 1559–1568.
Fallahi S., Babaei M., Rostami A., Mirahmadi H., Arab-Mazar Z. and Sepahvand A. (2020). Diagnosis of Candida albicans: Conventional diagnostic methods compared to the Loop-Mediated Isothermal Amplification (LAMP) assay. Arch. Microbiol., 202(2): 275–282.
Freitas A.R., Sousa C., Novais C., Silva L., Ramos H. and Coque T.M. (2017). Rapid detection of high-risk Enterococcus faecium clones by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Diagn Microbiol Infect. Dis., 87(4):299–307.
Fridkin S.K. (2005). The changing face of fungal infections in health care settings. Clin. Infect. Dis., 41: 1455. Gutiérrez J., Morales P., González M.A. and Quindós G. (2002). Candida dubliniensis: a new fungal pathogen. J. Basic Microbiol., 42(3): 207.
Handal N., Jorgensen S.B., Tunsjø H.S., Johnsen B.O. and Leegaard T.M. (2015). Anaerobic blood culture isolates in a Norwegian university hospital: Identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. Apmis., 123(9): 749–758.
Jensen J., Munoj P., Guinea J., Rodriguez-Creixems M. Pelaez T. and Bouza E. (2007). Mixed fungemia: Incidence, risk factors, and mortality in a general hospital. Clin. Infect. Dis., 44(12): e109–e114.
Jensen K., Santisteban M.S., Urekar C and Smith M.M. (2011). Histone H2A.Z acid patch residues required for deposition and function. Mol. Genet. Genomics., 285(4): 287–96.
Jia X., Li C., Cao J., Wu X. and Zhang L. (2018). Clinical characteristics and predictors of mortality in patients with candidemia: A six-year retrospective study. Eur. J. Clin. Microbiol. Infect. Dis., 37(9): 1717–1724.
Joshi K.R., Solanki A. and Praksh P. (1993). Morphological identification of Candida species on glucose agar, rice extract agar and corn meal agar with and without Tween-80. Indian J. Pathol. Microbiol., 36(1): 48–52.
Kohler J.R., Casadevall A. and Perfect J. (2015). The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med., 5(1): a019273.
Kullberg B.J. and Arendrup M.C. (2015). Invasive candidiasis. N. Engl. J. Med., 373(15): 1445–1456. 28. Kumar P., Upadhyay S.K. and Singh R. (2018). A study on recent trends in therapy of air borne communicable disease caused by Mycobacterium tuberculosis: The Tuberculosis. Bull. Pure Appl. Sci. (Zool), 37A(2): 65–74.
Li Y., Du M., Chen L.A., Liu Y., Liang Z. (2016). Nosocomial bloodstream infection due to Candida spp. in China: Species distribution, clinical features, and outcomes. Mycopathol., 181(7-8): 485–495. 30. MacCallum D.M. (2009). Massive induction of innate immune response to Candida albicans in the kidney in a murine intravenous challenge model. FEMS Yeast Res., 9(7): 1111–1122. 31. Michael Y.L., Yehuda C., Jennifer Z., Flores E.L., Tolentino J., Pranavi S. and Weber S.G. (2005). Prior antimicrobial therapy and risk for hospital-acquired Candida glabrata and Candida krusei fungemia: A case-case-control study. Antimicrob. Agents Chemother., 49(11): 4555–4560. 32. Moran C., Grussemeyer C.A., Spalding J.R., Benjamin D.K. and Reed S.D. (2009). Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: Comparison of mortality and costs. Pediatr. Infect. Dis. J., 28(5): 433–435.
Morgan M.A., Wilkowske C.J. and Roberts G.D. (1984). Candida pseudotropicalis fungemia and invasive disease in an immunocompromised patient. J. Clin. Microbiol., 20(5): 1006–1007. 34. Moyes D.L., Murciano C, Runglall M., Islam A., Thavaraj S., and Naglik J.R. (2011). Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One, 6: e26580.
Neppelenbroek K.H., Seo R.S., UrbanV.M., Silva S., Dovigo L.N., Jorge J.H. and Campanha N.H. (2014). Identification of Candida species in the clinical laboratory: A review of conventional, commercial, and molecular techniques. Oral Dis., 20(4): 329–44.
Nur Y. (2014). Epidemiology and risk factors for invasive candidiasis, Ther. Clin. Risk Manag., 10: 95–105.
Pappas P.G. (2006). Invasive candidiasis. Infect. Dis. Clin. North Am., 20(3): 485–506.
Pappas P.G., Rex J.H. and Lee J. (2003). A prospective observational study of candidemia: Epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin. Infect. Dis., 37: 634–643.
Perlin D.S. (2007). Resistance to echinocandin-class antifungal drugs. Drug Resist. Updates, 10(3): 121-130.
Pfaller M.A. and Diekema D.J. (2007). Epidemiology of invasive candidiasis: A persistent problem. Clin. Microbiol. Rev., 20(1): 133–163.
Pfaller M.A., Diekema D.J., Gibbs D.L., Newell V.A., Nagy E., Dobiasova S., Rinaldi M., Barton R. and Veselov A. (2008). Candida krusei, a multidrug-resistant opportunistic fungal pathogen: Geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J. Clin. Microbiol., 46(2): 515–521.
Pincus D.H., Orenga S. and Chatellier S. (2007). Yeast identification: Past, present, and future methods. Med. Mycol., 45(2): 97–121.
Rodrigues C.F., Rodrigues M.E. and Henriques M. (2019). Candida sp. infections in patients with diabetes mellitus. J. Clin. Med., 8(1): 76.
Saeed S., Hasan S., Kuldeep and Parmar S.S. (2017). Conventional and recent diagnosis aids in oral candidal infections: A brief overview. Biomed. Pharmacol. J., 10(1): 419–426. 45. Samaranayake Y.H. and Samaranayake L.P. (1994). Candida krusei: Biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J. Med. Microbiol., 41(5): 295– 310.
Sanchez B.R., Cercenado E., Coste A.T. and Greub G. (2019). Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Euro. Surveill., 24(4): 1800193. 47. Sardi J.C., Almeida A.M. and Mendes-Giannini, M.J. (2011). New antimicrobial therapies used against fungi present in subgingival sites: A brief review. Arch. Oral. Biol., 56: 951–959. 48. Schubert S. and Kostrzewa M. (2017). MALDI-TOF MS in the microbiology laboratory: Current trends. Curr. Issues Mol. Biol., 23: 17–20.
Schulze J. and Sonnenborn U. (2009). Yeasts in the Gut: From commensals to infectious agents. Dstch. Arztebl. Int., 106(51-52): 837–842.
Scorzoni L., de Lukas M.P., Mesa-Arango A.C., Fusco-Almeida A.M., Lozano E., Cuenca-Estrella M., Mendes-Giannini M.J. and Zaragoza O. (2013). Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One, 8(3): e60047.
Shoff C.J. and Perfect J.R. (2020). Uncommon yeasts and molds causing human disease. Ref. Module Life Sci., Doi.org/10.1016/B978-0-120809633-8.21023-6.
Sievert D.M., Ricks P. and Edwards J.R (2013). National Healthcare Safety Network (NHSN) team and participating NHSN Facilities antimicrobial-resistant pathogens associated with healthcare associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention 2009–2010. Infect Cont. Hosp. Epidemiol., 34(1): 1–14.
Singhal N., Kumar M., Kanaujia P.K. and Virdi J.S. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol., 6: 791. 54. Stevenson L.G., Drake S.K. and Murray P.R. (2010). Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin. Microbiol., 48(2): 444–447.
Tadec L., Talarmin J.P., Gastinne T., Bretonnière C., Miegeville M., Le Pape P., Morio F. (2016). Epidemiology, risk factor, species distribution, antifungal resistance and outcome of Candidemia at a single French hospital: A 7-year study. Mycoses. 59(5): 296–303.
Upadhyay S.K., Singh R., Kumar P., Singh M., Yadav M., Kumar V., Aggarwal D. and Sehrawat N. (2019). In vitro antitubercular activity of dihydropyridine-dicarboxamide and pyrazole derivatives against Mycobacterium tuberculosis. Bull. Pure Appl. Sci. (Zool.), 38A(2): 102–109.
van Schalkwyk J. and Yudin M.H. (2015). Vulvovaginitis: Screening for and management of trichomoniasis, vulvovaginl candiasis and bacterial vaginosis. J. Obstet. Gynaecol. Can., 37(3): 266– 274.
Welker M. and van Belkum A. (2019) one system for all: is mass spectrometry a future alternative for conventional antibiotic susceptibility testing? Front Microbiol., 10: 2711.
White J.M., Chaudhry S.I., Kudler J.J., Sekandari N., Schoelch M.L. and Silverman S.Jr. (1998).
Nd:YAG and CO2 laser therapy of oral mucosal lesions. J. Clin. Laser Med. Surg., 16: 299–304.
Wisplinghoff H., Bischoff T., Tallent S.M., Seifert H., Wenzel R.P. and Edmond M.B. (2004).
Nosocomial bloodstream infections in US Hospitals: Analysis of 24,179 cases from a prospective
nationwide surveillance study. Clin. Inf. Dis., 39(3): 309–317.
Wolters M., Rohde H., Maier T., Belmar-Campos C., Franke G., Scherpe S. and Christner M.
(2011). MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant
Staphylococcus aureus lineages. Int. J. Med. Microbiol., 301(1): 64–68.