Role of Bacteria in Bioremediation of Chromium from Wastewaters: An Overview

Authors

  • Mukesh Kumar Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana133207, India
  • Tapan Kumar Mukherjee Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana133207, India
  • Indu Sharma Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana133207, India
  • Sushil Kumar Upadhyay Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana133207, India
  • Raj Singh Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana133207, India

DOI:

https://doi.org/10.48165/

Keywords:

Bioremediation, Chromium, Technology, Pollutant, Bacteria

Abstract

Chromium exists in many forms according to their  valence from 0 to VI. Most dominant and stable  valences of Chromium are III and IV. Chromium is non  degradable, harmful and toxic pollutants which  negatively affect the environment. It transfers to one  trophic level to another via the food chain and continues  their cycle in the nature. Bacteria, fungi, algae and  plants are the best constituents of biomass which  reduces the toxicity of heavy metals in the ecosystem.  Bioremediation is a natural process for waste treatment  in an industrial area. This comprehensive review article  describes the sources of chromium contamination in  wastewater and soils, various treatment technologies for  the removal of chromium from water/ wastewater and  different bacteria dependent possible bioremediation of  this metalin aneco-friendly and cost effective manner. 

References

. Addour, L., Belhocine, D., Boudries, N., Comeau, Y., Pauss, A. and Mameri, N. (1999) Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J. Chem. Technol. Biotechnol. 74, 1089-1095.

. Aksu, Z., Açikel, U. and Kutal, T. (1997) Application of multicomponent adsorption isotherms to isotherms to simultaneous biosorption of iron (III) and chromium (VI) on C. vulgaris. J. Chem. Technol. Biotechnol. 70, 368-378

. Ashwini, C., Poopal, R. and Laxman, S. (2009) Studies on biological reduction of chromate by Streptomyces griseus. J. Hazard. Material. 169(103), 539-545.

. Atkinson, R. (1998). The life story interview. Sage.

. Babel, S. and Kurniawan, T.A. (2003) Low cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219-243.

. Bolan, N., Kunhikrishnan, A., & Gibbs, J. (2013). Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant and soil, 367(1), 615-625.

. Chardin, B., Dolla, A., Chaspoul, F., Fardeau, M.L., Gallice, P. and Bruschi, M. (2002) Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 60, 352-360.

. Chaturvedi, M.K. (1992) Biodegradation of tannery effluent isolation and characterisation of microbial consortium. Indian. J. Environ. Prot. 12(5), 335-340.

. Chen, J.M.N. and Hao, O.J.N. (1998) Microbial chromium (VI)

reduction. Crit. Rev. Environ. Sci. Technol. 28(3), 219-251.

. Compos, J., Martinez-Pacheco, M. and Cervantes, C. (1995) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp strain. Antonie van Leeuwenhoek. 68, 203-208.

. Cossich, E.S., Tavares, C.R.G. and Ravagnani, T.M.K. (2002) Biosorption of chromium (III) by Sargassum sp. biomass. Elect. J. Biotechnol. 5(2), 133-140.

. Czakó-Vér, K., Batiè, M., Raspor, P., Sipiczki, M. and Pesti, M. (1999) Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol. Lett. 178,

-115.

. Fernandez, P. M., Vinarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroa, L. I. C. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere,

, 139–148. doi:10.1016/j.chemosphere.2018. 05.166.

. Fourest, E. and Roux, J.C. (1992) Heavy metal biosorption by fungal mycelial by products mechanism and influence of pH. Appl. Microbiol. Biotechnol. 32, 399-403.

. Francoise, C.R. and Bourg, A.C.M. (1991). Aqueous geochemistry of chromium: A review. Water. Res. 25, 807-816.

. Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H., & Siegel, S. M. (1987). Removal of metal ions from aqueous solutions by Penicillium

biomass: kinetic and uptake parameters. Water, Air, and Soil Pollution, 33(3), 359-371.

. Ganguli, A. and Tripathi, A.K. (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett. Appl. Microbiol. 28, 76-80.

. Ganguli, A., & Tripathi, A. K. (2001). Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. Journal of microbiology and biotechnology, 11(3), 355-361.

. Ghosh, G. and Bhattacharya, P.K. (2006) Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chem. Engg. J. 119(1), 45-53.

. Gupta, V.K. Shrivastava A.K. and Jain, N. (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water. Res. 35(17), 4079-

. Gupta, V.K., Park, K.T. Sharma S. and Mohan, D. (1999) Removal of chromium (VI) from electroplating industry wastewater using bagasse flyash- a sugar industry waste material. Environmentalist. 19,

-136.

. Gupta, V.K., Srivastava, S.K. and Mohan, D. (1997) Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste. Manage. 17(8), 517-522.

. Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology, 2018.

. James, B.R. and Bartlett, R.J. (1983) Behavior of Chromium in Soils: adsorption and reduction of hexavalent forms. J. Environ. Qual.

, 177-181.

. Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: A comprehensive review. Chemosphere, 207, 255–266. doi:10.1016/j.chemosphere.2018.

050.

. Kafilzadeh, F., & Saberifard, S. (2016). Isolation and identification of chromium (VI)-resistant bacteria from Soltan Abad river sediments (Shiraz-Iran). Jundishapur Journal of Health Sciences, 8, e33576. doi:10.17795/jjhs-33576.

. Katz, S.A. and Salem, H. (1994). The Biological and Environmental Chemistry of Chromium. VCH Publishers, Inc., New York.

. Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman, L. and Mabuni, C.A. (1999) Critical

assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29(1), 1-46.

. Kozlowski, C.A. and Walkowiak, W. (2002). Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes.

Water Res. 36, 4870-4876.

. Krishnamurthy, S. and Wilkens, M.M. (1994). Environmental chemistry of Cr. Northeastern Geology. 16(1), 14-17.

. Kuyucak, N. and Volesky, B. (1989). Biosorbents for recovery of metals from industrial solutions. Biotechnol. Left. 10(2), 137-142.

. Landrot, G., Tappero, R., Webb, S. M., & Sparks, D. L. (2012). Arsenic and chromium speciation in an urban contaminated soil. Chemosphere, 88, 1196–1201. doi:10.1016/

j.chemosphere.2012.03.069.

. Le, T. T., Son, M. H., Nam, I. H., Yoon, H., Kang, Y. G., & Chang, Y. S. (2017). Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. Journal of hazardous materials, 325, 82-89.

. Losi, M., Amrhein, C. and Frankenberger, W.T. (1994) Environmental Biochemistry of Chromium. Rev. Environ. Contam. Toxicol. 136, 91-119.

. Losi, M.E. and Frankenberger, W.T. (1994b) Chromium resistant microorganism isolated from evaporation pounds of a metal processing plant. Water. Air. Soil. Pollut. 74, 405-413.

. Losi, M.E., Amrhein, C., Frankenberger, W.T. (1994a). Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 36, 91-121.

. Lovley, D. R., & Phillips, E. J. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Applied and environmental microbiology, 60(2), 726-728.

. Lovley, D.R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14,85-93.

. Matis, K.A. and Mavros, P. (1991). Recovery of metals by ion flotation

from dilute aqueous solutions. Sep. Purif. Meth. 20, 1-48.

. Megharaj, M., Avudainayagam, S. and Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 47(1), 51-

. Michel, C., Brugna, M., Aubert, C., Bernadac, A. and Bruschi, M., (2001) Enzymatic reduction of chromate: comparative studies using sulfate reducing bacteria. Appl. Microbiol. Biotechnol. 55, 95-

. Michel, C., Brugna, M., Aubert, C., Bernadac, A. and Bruschi, M., (2001). Enzymatic reduction of chromate: comparative studies using sulfatereducing bacteria. Appl. Microbiol. Biotechnol. 55, 95-

. Mohammadi, T., Moheb, A., Sadrzadeh, M. and Razmi, A. (2005). Modeling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol.

(1), 73-82.

. Mohan, D., Singh, K.P. and Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res. 44, 1027-1042.

. Mohan, D., Singh, K.P. and Singh, V.K. (2006).Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.

J. Hazard. Mat. 135, 280-295.

. Oh, Y.S. and Choi, S.C. (1997). Reduction of hexavalent chromium by Pseudomonas aeruginosa HP014. J. Microbiol. 35, 25-29.

. Ohtake, H. and Silver, S. (1994). Bacterial detoxification of toxic chromate. In: Chaudhry, G.R. (Ed.), Biological Degradation and Bioremediation of Toxic Chemicals. Chapman and Hall, London.

. Ohtake, H., Komori, K., Cervantes, C. and Toda, K. (1990). Chromate resistance in a chromate reducing

strain of Enterobacter cloacae. FEMS Microbiol. Lett. 67, 85-88.

. Ozaki, H.; Sharma, K.; Saktaywin, W. (2002) Performance of an Ultra LowPressure Reverse Osmosis Membrane (ULPROM) for Separating Heavy Metal: Effects of Interference Parameters. Desalination, 144, 287–294

. Parga, J.R., Cocke, D.L., Valverde, V., Gomes, J.A.G., Kesmez, M., Moreno, H., Weir, M. and Mencer, D. (2005). Characterization of electrocoagulation for removal of chromium and arsenic. Chem. Eng. Technol. 28(5), 605-612.

. Patnaik, P. (2003). Hand book of Inorganic Chemicals. New York: McGraw-Hill.

. Pattanapipitpaisal, P., Brown, N.L. and Macaskie, L.E. (2001). Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI) contaminated site. Appl. Microbiol. Biotechnol. 57, 257-261.

. Petruzzelli, D., Passino, R. and Tiravanti, G. (1995). Ion exchange process for chromium removal and recovery from tannery wastes. Ind. Eng. Chem. Res. 34, 2612-2617.

. Philip, L., Iyengar, L. and Venkobachar, C. (1998). Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J. Environ. Engg. ASCE 124, 1165-

. Pradhan, D., Sukla, L. B., Sawyer, M., & Rahman, P. K. S. M. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55, 1–20. doi:10.1016/j.jiec.2017.06.040.

. Radovic, L.R., Moreno-Castilla, C. and Rivera-Utrilla, J. (2000). Carbon materials as adsorbents in aqueous solutions, in: L.R. Radovic (Ed.), Chemistry and Physics of Carbon, vol. 27, Marcel Dekker, Inc., New York,

. Rai, D., Sass, B.M. and Moore, D.A. (1987). Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorg. Chem. 26, 345-349.

. Rengaraj, S., Joo, C.K., Kim, Y. and Yi, J. (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater. 102 (2/3), 257-275.

. Rengaraj, S., Yeon, K.H. and Moon, S.H, (2001). Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87(1-3),

-287.

. Rengaraj, S., Yeon, K.H., Kang, S.Y., Lee, J.U., Kim, K.W. and Moon, S.H. (2002) Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation

exchange resin. J. Hazard. Mater. 92(2), 185-198.

. Rich, G. and Cherry, K. (1987). Hazardous Waste Treatment Technologies, Pudvan Publishers, New York.

. Ross, D.S., Sjogren, R.E. and Bartlett, R.J. (1981). Behavior of chromium in soils 4. Toxicity to microorganisms. J. Environ. Qual.

,145-148.

. Roundhill, D.M. and Koch, H.F. (2002) Methods and techniques for the selective extraction and recovery of oxoanions. Chem. Soc. Rev. 31, 60-67.

. Sag, Y. (2001). Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sci. Technol. 30(1), 1-48.

. Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254, 2959–2972. doi: 10.1016/j.ccr.2010.06.005.

. Sakaguchi, T. and Nakajima, A. (1991). Accumulation of heavy metals such as uranium and thorium by microorganisms In: R.W. Smith and M. Misra (Editors), Mineral Bioprocessing. The Minerals, Metals and Materials Society.

. Salazar, E., Ortiz, M.I. and Urtiaga, A.M. (1992). Equilibrium, kinetics of Cr(VI) extraction with aliquat 336. Ind. Eng. Chem. Res.

, 1516-1522.

. Saxena, D., Levin, R., & Firer, M. A. (2000). Removal of chromate from industrial effluent by a new isolate of Staphylococcus cohnii. Water science and technology, 42(1-2), 93-98.

. Shaalan, H., Sorour, M. and Tewfik, S. (2001). Simulation and optimization of a membrane system for chromium recovery from tanning wastes. Desalination.

, 315-324.

. Shakoori AR, Tahseen S, Haq RU (1999) Chromium tolerant bacteria from industrial effluents and their use in detoxication of hexavalent chromium. Folia Microbiol 44, 50–54

. Shen, H. and Wang, Y.T. (1993). Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol. 3771- 3777.

. Shrivastava, S., & Thakur, I. S. (2003). Bioabsorption potential of Acinetobacter sp. strain IST 103 of bacterial consortium for removal of chromium from tannery effluent.

. Shukla, K. P., Sharma, S., Singh, N. K., Singh, V., Bisht, S., & Kumar, V. (2013). Rhizoremediation: a promising rhizosphere technology. Applied Bioremediation Active and Passive Approaches, 2, 333-352.

. Sivakumar, D. (2016). Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species. Global Journal of Environmental Science and Management, 2, 105–124. doi:10.7508/GJESM.2016.02.002.

. Song, Z., Williams, C.J. and Edyvean, R.G.J. (2000). Sedimentation of tannery wastewater. Water. Res. 34(7), 2171-2176.

. Srinath, T., Garg, S.K. and Ramteke, P.W. (2003). Biosorption and elution of chromium from immobilized Bacillus coagulans

biomass. Indian. J. Exp. Bio. 41, 986-990.

. Srinath, T., Verma, T., Ramteke, P.W. and Garg, S.K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate

resistant bacteria. Chemosphere. 48, 427-431.

. Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation, 18(5),

-646.

. Sun, W., Cheng, K., Sun, K. Y., & Ma, X. (2021). Microbially Mediated Remediation of Contaminated Sediments by Heavy Metals: A Critical Review. Current Pollution Reports, 1-12.

. Tels, M. (1987). Advances in treating heavy metals containing wastes. Resour. Conserv. 14, 71- 92.

. Tiravanti, G., Petruzzelli, D., & Passino, R. (1997). Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery. Water Science and Technology, 36(2-3), 197-207.

. Trudinger, P. A., & Swaine, D. J. (Eds.). (1979). Biogeochemical cycling of mineral-forming elements. Elsevier.

. Tsezos, M. and Volesky, B. (1982). The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioengg. 24, 385-401.

. Vendruscolo, F., da Rocha Ferreira, G. L., & Antoniosi Filho, N. R. (2017). Biosorption of hexavalent chromium by microorganisms. International Biodeterioration & Biodegradation, 119, 87–95. doi:10.1016/j.ibiod.2016.10.008.

. Wang, P. C., Mori, T., Toda, K., & Ohtake, H. (1990). Membrane associated chromate reductase activity from Enterobacter cloacae. Journal of bacteriology, 172(3), 1670-1672.

. White, C., Sayer, J. A., & Gadd, G. M. (1997). Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS microbiology reviews, 20(3-4), 503-

. Xia, Y. & Liyuan, C. (2002). Studies of gelatinous supports for immobilizing inactivated cells of Rhizopus oligosporusto prepare

biosorbent for lead ions. The International J. Environ. Studies. 5, 1-6.

. Yamamoto, K., Kato, J., Yano, T.& Ohtake, H. (1993). Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnology and bioengineering, 41(1), 129-133.

Published

2021-12-15

How to Cite

Role of Bacteria in Bioremediation of Chromium from Wastewaters: An Overview . (2021). Bio Science Research Bulletin, 37(2), 77–87. https://doi.org/10.48165/