Nanoparticles and Nanotechnology: From Source, Properties, Types, Synthesis to Multifaceted Functional Potential in Agriculture

Authors

  • Anjali Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Raj Singh Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Indu Sharma Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Pooja Sharma Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Mahiti Gupta Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Paavan Singhal Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Soniya Goyal Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Mukesh Yadav Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India
  • Sushil Kumar Upadhyay Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana- 133207, India

DOI:

https://doi.org/10.48165/

Keywords:

Nanoparticles, Agriculture, Nanosensors, Nano-fertilizers, Nano-heribicides, Nano-pesticides Disease management, Sustainable development

Abstract

Nanoparticles are a solid colloidal particle which ranges in  size from 10 to 1000nm. The nanoparticles differs from its  own bulk form in its physical properties and more over toxic  than its bulk form. Due to these properties, nanoparticles can be used for a wide range of applications in various fields of  science. Nanoparticles may be produced naturally,  incidentally or can be engineered. These have profound  multifaceted agricultural applications such as bioimaging,  biosensors, nano-heribicides, nano-pesticides, nano fertilizers, etc. This study is focused on to review the  properties, types, synthesis and multifaceted potential of  different nanoparticles in agriculture fields for effective  management, improved productivity and sustainable  development.  

References

Aggarwal, D., Upadhyay, S.K., Singh, R. and Tuli, H.S. (2021). Recent patents on therapeutic activities of xanthohumol: A prenylated chalconoid from hops (Humulus lupulus L.). Pharmaceutical Patent Analyst, 10(1): 37-49.

Aitken R.J., Creely K.S. and Tran C.L. (2004). Nanoparticles: An occupational hygiene review. Institute of Occupational Medicine for the Health and Safety Executive. Crown, 104p.

Benzon, H.R.L., Rubenecia, M.R.U., Ultra, Jr. V. and Lee, S.C. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7(1): 105-117.

Bindraban, P.S., Dimkpa, C.O. and Pandey, R. (2020). Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 56: 299–317.

Biswas, P. and Kumar, N. (2021). Application of nanotechnology in crop improvement: An overview. Crop Improvement CRC Press, pp. 211-224.

Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. (2007). Zinc in plants. New Phytologist, 173(4): 677-702.

Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22(2): 577- 583.

Chinnamuthu, C.R. and Kokiladevi, E. (2007). Weed management through nanoherbicides. Application of Nanotechnology in Agriculture, 10: 978- 981.

Cicek, N. and Cakirlar, H. (2002). The effect of salinity on some physiological parameters in two maize cultivar. Journal of Plant Physiology, 28: 66-74.

Dan, S., Upadhyay, S.K., Girdhar, M., Mandal, M. and Sakshi (2021). Oral carcinoma and therapeutic approaches of nanotechnology: From fundamental concept, incidence, and molecular mechanism to emerging treatment

techniques. Biointerface Research in Applied Chemistry, 12(2): 26p.

Dinca, V., Mocanu, A., Isopencu, G., Busuioc, C., Brajnicov, S., Vlad, A. and Suchea, M. (2020). Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arabian Journal of Chemistry, 13: 3521-3533.

El-Raie, A., Hassan, H.E., El-Rahman, A. and Arafat, A.A. (2015). Response of tomato plants to different rates of iron nanoparticles spraying as foliar fertilization. Misr Journal of Agricultural Engineering, 32(3): 1295-1312.

Ghaly, A.E. (2009). The black cutworm as a potential human food. American Journal of Biochemistry and Biotechnology, 5(4): 210-220.

Guo, D., Xie, G. and Luo, J. (2013). Mechanical properties of nanoparticles: Basics and applications. Journal of Physics D: Applied Physics, 47(1): 013001.

Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R.K., Muniyandi, J. and Eom, S.H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1): 328-335.

Gutiérrez, F.J., Mussons, M.L., Gatón, P. and Rojo, R. (2011). Nanotechnology and food industry. Scientific, health and social aspects of the food industry. Tech Croatia. pp.127-147.

Hidoto, L., Worku, W., Mohammed, H. and Bunyamin, T. (2017). Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of Soil Science and Plant Nutrition, 17(1): 112-126.

Horn, E.M., Theodore, N., Feiz-Erfan, I., Lekovic, G.P., Dickman, C.A. and Sonntag, V.K. (2006). Complications of halo fixation in the elderly. Journal of Neurosurgery: Spine, 5(1): 46-49.

Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y. F., Ohta, T. and Yamamoto, K. (2004). Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters, 4(11): 2163- 2169.

Houghton, J. (2005). Global warming. Reports on Progress of Physics, 68(6): 1343-1403.

Iqbal, M.A. (2019). Nano-fertilizers for sustainable crop production under changing climate: A global perspective. IntechOpen,

https://doi.org/10.5772/intechopen.8908 9.

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10): 2638-2650.

Kanti, P.K. and Karthika, U.P. (2016). A review paper on role of nano-structured materials in mechanical engineering applications. National Conference on Advances in Mechanical Engineering Science, pp. 414-418.

Klostranec, J.M. and Chan, W.C. (2006). Quantum dots in biological and biomedical research: recent progress and present challenges. Advanced Materials, 18(15): 1953-1964.

Lee, S., Choi, S.S., Li, S.A. and Eastman, J.A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2): 280-289.

Li, X., Xu, H., Chen, Z.X., Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, https://doi.org/10.1155/2 011/270974.

Lin, D. and Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2): 243-250.

Liscano, J.F., Wilson, C.E., Norman-Jr, R.J. and Slaton, N.A. (2000). Zinc availability to rice from seven granular fertilizers (Vol. 963). Arkansas Agricultural Experiment Station.

Liu, D., Cai, W., Marin, M., Yin, Y. and Li, Y. (2019). Air-liquid interfacial self assembly of two-dimensional periodic nanostructured arrays. Chemistry of Nano Materials, 5(11): 1338-1360.

Liu, R. and Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4(1): 1-6.

Marchiol, L. (2018). Nanotechnology in agriculture: New opportunities and perspectives. IntechOpen, https://doi.org/10.5772/intechopen.7442

Moaveni, P. and Kheiri, T. (2011). TiO2 nano particles affected on maize (Zea mays L). 2nd International Conference on Agricultural and Animal Science,

Singapore, 22: 160-163.

Mogilevsky, G., Hartman, O., Emmons, E.D., Balboa, A., DeCoste, J.B., Schindler, B.J. and Karwacki, C.J. (2014). Bottom-up synthesis of anatase nanoparticles with graphene domains. ACS Applied Materials and Interfaces, 6(13): 10638- 10648.

Mukherjee, P., Roy, M. and Mandal B.P. (2008). Green synthesis of highly stabilized nanocrystaline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Journal of Nanotechnology, 19: 1-7.

Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. and their antiplasmodial activities. Asian Pacific Journal of Tropical Biomedicine, 2(7): 574– 580.

Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A. and Rai, V. (2020). Application of nanotechnology in agriculture. Environmental Nanotechnology, Springer, 4: 317-348.

Prathna, T.C., Mathew, L., Chandrasekaran, N., Raichur, A.M. and Mukherjee, A. (2010). Biomimetic synthesis of nanoparticles: Science, technology and applicability. IntechOpen, https://doi.org/10.5772/8776.

Rani, A., Singh, R., Kumar, P. and Singh, C. (2015). Nanotechnology: An emerging strategy against phyto-pathogens in agricultural crops. Advances in Life Sciences, 4(2): 35-37.

Rani, A., Singh, R., Singh, C., Singh, M. and Lakhera, K. (2018a). Role of nanotechnology in food sector. Bio-Science Research Bulletin, 34(1): 33-35.

Rani, A., Kumar, P., Singh, R., Singh, C. and Chauhan, N. (2018b). Antifungal activity of biosynthesized silver

nanoparticles. Biotech Today: An International Journal of Biological Sciences, 8(1): 43-47.

Reiss, G. and Hütten, A. (2005). Applications beyond data storage. Nature Materials, 4(10): 725-726.

Buzea C., Pacheco, I.I. and Robbie K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4): 17-172.

Roduner, E. (2006). Size matters: Why nanomaterials are different? Chemical Society Reviews, 35(7): 583-592.

Rogers, F., Amott, P., Zielinska, B., Sagebiel, J., Kelly, K.E., Wagner, D., Lighty, J.S. and Sarofim, A. F. (2005). Realtime measurements of jet aircraft engine exhaust Journal of Air and Waste Management Association, 55: 583-593.

Salouti, M. and Faghri Zonooz, N. (2017) Biosynthesis of metal and semiconductor nanoparticles, scale-up, and their applications. In: Nanoscience and plant–

soil systems Vol. 48 Soil biology (eds., Ghorbanpour M., Manika K., Varma A.) Springer, Cham. https://doi.org/10.1007/978-3-319-46835-

_2.

Saxena, A., Tripathi, R.M. and Singh, R.P. (2010). Biological synthesis of nanoparticles by using onion. Digest Journal of Nano-Particles and Biostructures, 5: 427-432.

Seleiman, M.F., Almutairi, K.F., Alotaibi, M., Shami, A., Alhammad, B.A., Battaglia, M.L. (2021). Nano- fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10(2): 1-27.

Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H. and Zhou, J. (2019). Applications of Nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.

Singh, A., Jain, D., Upadhyay, M.K., Khandelwal, N. and Verma, D.H.N., (2010). Green synthesis of silver nanoparticles using Argemone maxicana leaf extract and evaluation of the their antimicrobial activities. Journal of Nanomaterial and Biostructure, 5: 483-489.

Singh, M., Kumar, V., Sehrawat, N., Yadav, M., Chaudhary, M., Upadhyay, S.K., Kumar, S., Sharma, V., Kumar, S.,

Dilbaghi, N. and Sharma, A.K. (2021a). Current paradigms in epigenetic anticancer therapeutics and future challenges. Seminars in Cancer Biology, https://doi.org/10.1016/j.semcancer.2021

.03.013.

Singh, M., Renu, Kamboj, S., Kumari, S., Kamboj, V. and Upadhyay, S.K. (2020). One pot synthesis of physico-chemically stabilized ZnO nanoparticles via biological method and its potential application as antimicrobial agent. Bulletin of Pure and Applied Sciences (Zoology), 39A(1): 116- 129.

Singh, M., Renu, Kumar, V., Upadhyay, S.K., Singh, R., Yadav, M., Seema, Kumar, S., Sharma, A.K. and Manikanadan, S. (2021c). Biomimetic synthesis of silver nanoparticles from aqueous extract of Saraca indica and its profound antibacterial activity. Biointerface Research in Applied Chemistry, 11(1): 8110–8120.

Singh, M.D., Chirag, G., Prakash, P.O., Mohan, M.H., Prakasha G. and Vishwajith (2017). Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. International Journal of Agriculture Sciences, 9(7): 3831-3833.

Singh, R., Upadhyay, S.K., Singh, M., Sharma, I., Sharma, P., Kamboj, P., Saini, A., Voraha, R., Sharma, A.K., Upadhyay, T.K. and Khan, F. (2021b). Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Research in Applied Chemistry, 11(3): 9985-10005.

Singh, S., Kumar, A., Arora, P. and Sahu, S. (2019). Nanotechnology and its applications in crop improvement. Bulletin of Environment, Pharmacology and Life Sciences, 8(10): 01-06.

Taheri, M., Qarache, H.A., Qarache, A.A. and Yoosefi, M. (2016). The effects of zinc oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship Journal, 1(2): 17-20.

Thaxton C.S., Elghanian R., Thomas A.D., Stoeva S.I., Lee J.S., Smith N.D., Schaeffer A.J., Klocker H., Horninger W., Bartsch G. and Mirkin C.A. (2009). Nanoparticle based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy.

Proceedings of the National Academy of Science. U.S.A., 106(44): 18437–18442. 58. Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012). Zero-dimensional, one dimensional, two-dimensional and three dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4): 724-803.

Tuli, H.S., Mittal, S., Aggarwal, D., Parashar, G., Parashar, N.C., Upadhyay, S.K., Barwal, T.S., Jain, A., Kaur, G., Salva, R., Sak, K., Kumar, M., Varol., M., Iqubal, A. and Sharma, A.K. (2020). Path of silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Seminars in Cancer Biology, https://doi.org/10.1016/j.semcancer.2020 .09.014.

Upadhyay, S.K., Dan, S., Pant, M. and Shaloo (2021). Synergistic approach of graphene oxide-silver-titanium nanocomposite film in oral and dental studies: A new paradigm of infection control in dentistry. Biointerface Research in Applied Chemistry, 11(2): 9680-9703.

Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H. and Varadarajan, P.V. (2006). A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 341(12): 2012-2018.

Wang, R., Lang, J., Liu, Y., Lin, Z. and Yan, X. (2015). Ultra-small, size-controlled Ni(OH)2 nanoparticles: Elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 7(6), 183-184.

Yadav, D., Upadhyay, S.K., Anwar, M.F. and Unnithan, J.S. (2016). A review on the patents of various metal nanoparticles: Preparations and formulations. World Journal of Pharmacy and Pharmaceutical Sciences, 5(2): 1309-1317.

Yin, H., Too, H.P. and Chow, G.M. (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials, 26(29): 5818-5826.

Zhang, Y.X. and Wang, Y.H. (2017). Nonlinear optical properties of metal nanoparticles: A review. RSC Advances, 7(71): 45129-45144.

Zhou, Y., Dong, C.K., Han, L.L., Yang, J. and Du, X.W. (2016). Top-down preparation of active cobalt oxide catalyst. ACS Catalysis, 6(10): 6699-6703.

Published

2021-06-25

How to Cite

Nanoparticles and Nanotechnology: From Source, Properties, Types, Synthesis to Multifaceted Functional Potential in Agriculture . (2021). Bio Science Research Bulletin, 37(1), 23–34. https://doi.org/10.48165/