Prevalence of Inducible Clindamycin Resistance in Methicillin Resistant Staphylococcus aureus Isolated from Different Clinical Samples Received in a Tertiary Care Hospital
DOI:
https://doi.org/10.48165/Keywords:
Staphylococcus aureus, MRSA, Catheter, D test, ClindamycinAbstract
Staphylococcus aureus is recognized as greatest concern associated with both hospital and community acquired infections and if it is methicillin resistant then the severity increases. Erythromycin and clindamycin are considered as treatment of decision. However, protection from erythromycin with phony susceptibility to clindamycin in vitro may prompt remedial disappointment. Hence it is mandatory to study the prevalence of inducible clindamycin resistance. Out of the 875 clinical isolated samples, 403 (46.05%) showed presence of S. aureus. Out of theses 403 samples, 297 (73.70%) were found to be methicillin resistant S. aureus (MRSA) and 106 (26.30 %) were found to be methicillin sensitive S. aureus (MSSA). Further MRSA (Methicillin Resistant S. aureus) samples were analyzed for erythromycin and clindamycin sensitivity and resistivity. Minimum Inhibitory Concentration (MIC) of clindamycin among D test (Disc test) positive MRSA was also analyzed. The occurrence rate of D test positive MRSA strain was found to be more in Hospital Acquired Infections (HAI) as compared with Community Acquired Infection (CAI). Frequency of D test positive MRSA strains were more in Pus samples as compared with urine and blood samples. Further in case of HAI, D test positive MRSA was predominantly found in patients with Diabetic foot patients with postoperative wound and patients with Necrotizing Fasciitis. Out of samples associated with uropathogenic infection in hospital settings, More D test positive MRSA were found to be associated in patients with catheter installation in without catheter installation. Prolonged hospital stay (>5 days) was observed to be major risk factor for D test positive MRSA. Demographic profile of patients with D test positive MRSA strains revealed the predominance of male in comparison to female.
Downloads
References
Abe, Y., Shigemura, K., Yoshida, H., Fujisawa, M. and Arakawa, S. (2012). Risk factors for anti-MRSA drug resistance. Int. J. Antimicrob. Agents. 40: 423–426.
Aggarwal, D., Upadhyay, S.K., Kaur L., Kumar, A., Bhalla, H. and Singh, R. (2020). Assessment of microbial burden on vegetable salads for food safety and human health. Bull. Pure Appl. Sci. Zool. 39A (1): 130-136.
Ansari, S., Nepal, H.P., Gautam, R., Rayamajhi, N., Shrestha, S., Upadhyay, G., et al. (2014). Threat of drug resistant Staphylococcus aureus to health in Nepal. BMC Infect. Dis. 14: 157. https://doi.org/10.1186/1471-2334-14-157.
Argudin, M.A., Mendoza, M.C., and Rodicio, M.R. (2010). Food Poisoning and Staphylococcus aureus enterotoxins. Toxins. 2: 1751–1773.
Belbase, A., Pant, N.D., Nepal, K., Neupane, B., Baidhya, R., Baidya, R. and Lekhak, B. (2017). Antibiotic resistance and biofilm production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Ann. Clin. Microbiol. Antimicrob. 16(1): 15. https://doi.org/10.1186/s12941-017-0194-0.
Bou, G. (2007). Minimum inhibitory concentration (MIC) analysis and susceptibility testing of MRSA. Methods Mol. Biol. 391: 29-49.
CLSI. (2015). CLSI document M100-S25. Performance standards for antimicrobial susceptibility testing: Twenty fifth informational supplement edition. Wayne: Clinical and Laboratory Standards Institute.
Cuervo, G., Camoez, M., Shaw, E., Dominguez, M.A., Gasch, O., et al. (2015). Methicillin resistant Staphylococcus aureus (MRSA) catheter-related bacteraemia in haemodialysis patients. BMC Infect. Dis. 15: 484.
Di-Gregorio, S., Perazzi, B., Ordoñez, A.M., De-Gregorio, S., Foccoli, M., Lasala, M.B., et al. (2015). Clinical, microbiological, and genetic characteristics of heteroresistant vancomycin intermediate Staphylococcus aureus bacteremia in a teaching hospital. Microb. Drug Resist. 21: 25–34.
Drinkovic, D., Fuller, E.R., Shore, K.P., Holland, D.J., and Pegler, E. (2001). Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J. Antimicrob. Chemother. 48: 315-316.
Fiebelkorn, K.R., Crawford, S.A., McElmeel, M.L. and Jorgensen, J.H. (2003). Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J. Clin. Microbiol. 41: 4740–4.
Fishovitz, J., Hermoso, J.A., Chang, M. and Mobashery, S. (2014). Penicillin binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 66: 572-577.
Fokas, S., Tsironi, M., Kalkani, M. and Diony-Sopouloy, M. (2005). Prevalence of inducible clindamycin resistance in macrolide-resistant Staphylococcus spp. Clin. Microbiol. Infect. pp. 337-340.
Fram, D., Okuno, M.F.P., Taminato, M., Ponzio, V., Manfredi, S.R., Grothe, C., et al. (2018). Risk factors for bloodstream infection in patients at a Brazilian Hemodialysis Center: A case– control study. BMC Infect. Dis. 15: 158. https://doi.org/10.1186/s12879-015-0907-y
Fridkin, S.K., Hageman, J.C., Morrison, M., Sanza, L.T., Como-Sabetti, K., Jernigan, J.A., Harriman, K., Harrison, L.H., Lynfield, R. and Farley, M.M. (2005). Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352: 1436–1444.
Gangurde, N., Bajaj, P. and Phatale, S. (2014). Prevalence of inducible clindamycin resistance among Staphylococcus aureus isolates in a tertiary care hospital: An alarm before “No Antibiotic Era”. J. Evol. Med. Dental Sci. 3(18): 4839-4846.
Gupta, B.P. and Sinha, S. (2017). Prevalence of methicillin resistant Staphylococcus aureus in clinical samples of Teerthankar Mahaveer Medical College Hospital and Research Centre (TMMCH & RC), Moradabad (UP), India. Int. J. Med. Res. Hlth Sci. 6(6): 17-20.
Gupta, V., Datta, P., Rani, H. and Chander, J. (2009). Inducible clindamycin resistance in Staphylococcus aureus: A study from North India. J. Postgrad. Med. 55: 176-179. 19. Hurley, J.C. (2002). Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: A meta-analysis. Med. J. Aust. 176: 264–267.
Jacobus, C.H., Lindsell, C.J., Leach, S.D., Fermann, G.J., Kressel, A.B. and Rue, L.E. (2007). Prevalence and demographics of methicillin resistant Staphylococcus aureus in culturable skin and soft tissue infections in an Urban Emergency Department. BMC Emerg. Med. 7: 19. 21. Jenney, A., Holt, D., Ritika, R., Southwell, P., Pravin, S., Buadromo, E., Carapetis, J., Tong, S. and Steer, A. (2014). The clinical and molecular epidemiology of Staphylococcus Aureus infections in Fiji. BMC Infect. Dis. 14: 160. https://doi.org/10.1186/1471-2334-14-160.
Klevens, R.M., Morrison, M.A., Nadle, J., Petit, S., Gershman, K., Ray, S. et al. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J. Amer. Med. Asso. 298: 1763–71.
Kumar, N., David, M.Z., Boyle-Vavra, S., Sieth, J. and Daum, R.S. (2015). High Staphylococcus aureus colonization prevalence among patients with skin and soft tissue infections and controls in an Urban Emergency Department. J. Clin. Microbiol. 53(3): 810-815.
Kumar, P., Upadhyay, S.K. and Singh, R. (2018). A study on recent trends in therapy of air borne communicable disease caused by Mycobacterium tuberculosis: The tuberculosis. Bull. Pure Appl. Sci. Zool. 37A(2): 65–74.
Kumar, S. and Upadhyay, S.K. (2016). Pathogenesis of Flavobacterium colunare in fish of fresh water riverine ecosystem from eastern region of Uttar Pradesh, India. In. J. Rec. Scient. Res. 7(10): 13676-13679.
Kumar, S., Saifi, Z., Sharma, A.K. and Upadhyay, S.K. (2020). Rapid identification of clinical isolates of Klebsiella pneumoniae using MALDI-TOF MS from North India. Bull. Pure Appl. Sci. Zool. 39A(1): 194–199.
Kwon, K.T. and Armstrong, D.G. (2018). Microbiology and antimicrobial therapy for diabetic foot infections. Infect. Chemother. 50(1): 11–20.
Laclercq, R. (2002). Mechanisms of resistance to macrolides and lincosamides: Nature of resistance elements and their clinical implications. Clin. Infect. Dis. 34: 482-492. 29. Lall, M. and Sahni, A.K. (2014). Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Med. J. Armed Forces India. 70(1): 43–47. 30. Leonard, S.N., Rossi, K.L., Newton, K.L. and Rybak, M.J. (2009). Evaluation of the E-test GRD for the detection of Staphylococcus aureus with reduced susceptibility to glycopeptides. J. Antimicrob. Chemother. 63: 489–492.
Lewis, J.S. and Jorgensen, J.H. (2005). Inducible clindamycin resistance in Staphylococci: Should clinicians and microbiologists be concerned? Clin. Infect. Dis. 40: 280–285. 32. Lim, J.A., Kwon, A.E., Kim, S.K., Lee, C.K. and Choi, E.C. (2002). Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in gram-positive cocci isolated in korean hospital. J. Antimicrob. Chemother. 49: 489-495.
Lollar, D.I., Rodil, M., Herbert, B., Burlew, C.C. and Pieracci, F.M. (2016). Empiric methicillin resistant Staphylococcus aureus coverage in the early ventilator associated pneumonia window: If and When. Surg. Infect. 17(2). https://doi.org/10.1089/sur.2014.159
Lunacek, A., Koenig, U., Mrstik, C., Radmayr, C., Horninger, W. and Plas, E. (2014). Unexpected multidrug resistance of methicillin-resistant Staphylococcus aureus in urine samples: A single-center study. Korean J. Urol. 55(5): 349–353.
Mohanty, S., Behera, B., Sahu, S. and Praharaj, A.K. (2019). Recent pattern of antibiotic resistance in Staphylococcus aureus clinical isolates in Eastern India and the emergence of reduced susceptibility to vancomycin. J. Lab. Physicans. 11(4): 340–345.
Rao, G.G. (2000). Should clindamycin be used in treatment of patients with infections caused by erythromycin-resistant staphylococci? J. Antimicob. Chemother. 45: 715–716. 37. Ryan, K.J. (2004). Staphylococci. In: Sherris medical microbiology 4th edition (eds: Ryan, K.J. and Ray, C.G.). McGraw Hill, NewYork. pp. 261-271
Sedighi, I., Mashouf, R.Y., Pak, N. and Seif-Rabiee, M.A. (2009). D-test method for detection of inducible clindamycin resistance in Staphylococcus aureus. Iran J. Pediatr. 19: 293-297. 39. Singh, R., Upadhyay, S.K., Sharma, I., Devi, A., Sharma, P., Chauhan, N. and Singh, C. (2020). Characterization and identification of atypical yeast species causing fungemia by MALDI TOF MS technique. Bio-Sci. Res. Bull. 36(1): 55-63.
Singh, R., Upadhyay, S.K., Singh, M., Yadav, M., Kumar, V. and Sehrawat, N. (2019). A report on antibiotic susceptibility and resistance of pathogens causing urinary tract infection (UTI) to human patients. Bull. Pure Appl. Sci. Zool. 38A(2): 170-176.
Swenson, J.M., Brasso, W.B., Ferraro, M.J., Hardy, D.J., Knapp, C.C., McDougal, L.K., Reller, L.B., Sader, H.S., Shortridge, D., Skov, R., Weinstein, M.P., Zimmer. B.L. and Patel, J.B. (2007).
Detection of inducible clindamycin resistance in Staphylococci by broth micro dilution using erythromycin-clindamycin combination wells. J. Clin. Microbiol. 45(12): 3954-3957. 42. Tarai, B., Das, P. and Kumar, D. (2013). Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance and current treatment options. J. Lab. Physicians. 5(2): 71-78.
Upadhyay, S.K. (2016a). Activity patterns of cell free supernatant of antagonistic microbial strains in rodents host-parasite systems. Int. J. Sci. Res. 5(4): 332–336.
Upadhyay, S.K. (2016b). Allelopathic activities of specific microbial metabolites in the inland prawn fisheries off eastern Uttar Pradesh, India. Int. J. Sci. Res. 5(2): 415–416.
Upadhyay, S.K., Singh, R., Kumar, P., Singh, M., Yadav, M., Kumar, V., Aggarwal, D. and Sehrawat, N. (2019). In vitro antitubercular activity of dihydropyridine-dicarboxamide and pyrazole derivatives against Mycobacterium tuberculosis. Bull. Pure Appl. Sci. Zool. 38A(2): 102- 109.
Williamson, D.A., Lim, A. and Thomas, M.G. et al. (2013). Incidence, trends and demographics of Staphylococcus aureus infections in Auckland, New Zealand, 2001–2011. BMC Infect. Dis. 13: 569. https://doi.org/10.1186/1471-2334-13-569.