Ecological Indices of Microbes on Gastrointestinal Tract of Ornamental Fishes
DOI:
https://doi.org/10.48165/Keywords:
Ecological Indices, Fish, Microflora, Probiotics, Gastrointestinal TractAbstract
The aim of the study was to determine the ecological indices of an apical dominance and diversity rate of bacteria on gastrointestinal (GI) tract of some ornamental fishes. The GI tract bacterial strains were characterized by biochemical methods. Eleven species of bacterial strains were isolated belonging to the Phyla Proteobacteria (45%), Firumicutes (10%) and Actinobacteria (45%). Out of the eleven strains, Aeromonas sp., Micrococcus sp. and Vibrio sp., predominantly occurred in the GI tract. Total viable count of Vibrio metschnikovii (5.93x107 ± 0.2x107 CFU/ml) was significantly higher in Tanichthys albonubes and Micrococcus varians (9.42x102 ± 0.75x102 CFU/ml) was the least in Parachromis managuensis compared to other strains. Ecological indices of diversity and dominance have shown that out of ten ornamental fishes, Tanichthys albonubes has higher dominance of 0.993 and Cichla ocellaris has higher diversity and species richness of 0.509 and 0.806, respectively. The obtained results will create an impact on the aqua environment thereby decreasing an anthropogenic consequence of fishes. In future, the aforesaid positive aspect will be taken into consideration for formulating probiotics from gut microflora which probably will increase the endurance and health of fishes.
Downloads
References
Martinez-Porchas, M. and F. Vargas-Albores, (2017). Microbial metagenomics in aquaculture: A potential tool for a deeper insight into the activity. Rev. Aquacult., 9, 42-56. https://doi.org/10.1111/raq.12102
Bargiela, R., F. Mapelli, D. Rojo, B. et al. (2015). Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci. Rep., 5, 11651. https://doi.org/10.1038/srep11651
Stach, J.E.M., L.A. Maldonado, D.G. Masson, A.C. Ward, M.Goodfellow and A.T. Bull, (2003). Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl. Environ. Microbiol., 69, 6189-6200. https://doi.org/10.1128/aem.69.10.6189-6200.2003
El-Shafai, S.A., F A. El-Gohary, F.A. Nasr, P.V.D. Steen and H.J. Gijzen, (2004). Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquacult., 232, 117-127. https://doi.org/10.1016/S0044-8486(03)00516-7
Nieto, T.P., A.E. Toranzo and J.L. Barja, (1984). Comparison between the bacterial floras associated with fingerling rainbow trout cultured in two different hatcheries in the northwest of Spain. Aquacult., 42, 193-206. https://doi.org/10.1016/0044-8486(84)90100-5
Huber, I., B. Spanggaard, K.F. Appel, L. Rossen, T. Nielsen and L. Gram, (2004). Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol., 96, 117-132. https://doi.org/10.1046/j.1365-2672.2003.02109.x
Ringo, E., S. Sperstad, R. Myklebust, S. Refstie and A. Krogdahl, (2006). Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquacult., 261, 829-841 https://doi.org/10.1016/j.aquaculture.2006.06.030
Kapetanovic, D., B. Kurtovic and E. Teskeredzic, (2005). Differences in bacterial population in rainow trout (Oncorhynchus mykiss, Walbaum) fry after transfer from incubator to pools. Food Tech. Biotech., 43, 189-193.
Hovda, M.B., B.T. Lunestad, R. Fontanillas and J.T. Rosnes, (2007). Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquacult., 272 (1–4), 581-588. https://doi.org/10.1016/j.aquaculture.2007.08.045
Kim, D.H., J. Brunt and B. Austin, 2007. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol., 102: 1654-1664. https://doi.org/10.1111/j.1365-2672.2006.03185.x
Romero, J., E. Ringo and D.L. Merrifield, (2014). The Gut Microbiota of Fish. In: Merrifield, D. and E. Ringo (Eds.). Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. pp 75 -100. https://doi.org/10.1002/9781118897263.ch4
Di Maiuta, N., P. Schwarzentruber, M. Schenker and J. Schoelkopf, (2013). Microbial population dynamics in the faeces of wood-eating loricariid catfishes. Let. Appl. Microbiol., 56, 401-407. https://doi.org/10.1111/lam.12061
Ghosh, S., E. Ringo, A.D.G. Selvam, K.M.M. Rahiman, N. Sathyan, J. Nifty and A.A.M. Hatha, (2014). Gut associated lactic acid bacteria isolated from the estuarine fish Mugil cephalus: molecular diversity and antibacterial activities against pathogens. Int. J. Aquacult., 4, 1-11. https://doi:10.5376/ija.2014.04.0001
Buchanan, R.E. and N. E. Gibbons, (1974). Bergey's Manual of Determinative Bacteriology – 8th ed. Williams & Wilkins Co., Baltimore, Md. 21202. xxvi + 1246 pp.
Simpson, E.H., (1949). Measurement of diversity. Nature 163, 688
Shannon, C.E. and W. Weaver, (1949). The Mathematical Theory of Communication. Univ. Illinois Press, Urbana. 1-117.
Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. J. Theoret. Biol., 13, 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
Sorenson, T. (1948). A Method of Establishing Groups of Equal Amplitudes in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Royal Danish Science Society, Biological Scriptures, 5, 1-34.
Rombout, J.H., L. Abelli, S. Picchietti, G. Scapigliati and V. Kiron, (2011). Teleost intestinal immunology. Fish and Shellfish Immunol., 31, 616 - 626. https://doi.org/10.1016/j.fsi.2010.09.001
Lyons, P.P., J.F. Turnbull, K.A. Dawson and M. Crumlish, (2015). Exploring the microbial diversity of the distal intestinal lumen and mucosa of farmed rainbow trout Oncorhynchus mykiss (Walbaum) using next generation sequencing (NGS). Aquac. Res., 48(1), 1-15 https://doi.org/10.1111/are.12863
Luo, L., X. Chen and X. Cai, (2001). Effects of Andrographis paniculata on the variation of intestinal microflora of Ctenopharyngodon idellus. J. Fish. China, 25, 232-237.
Huang, H., P. Shi, Y. Wang, H. Luo, N. Shao, G. Wang, P. Yang and B. Yao, (2009). Gene diversity of beta-propeller phytase in the intestinal contents of grass carp insight into the major phosphorus release from phytate in nature. Appl. Environ. Microbiol., 75, 1508 - 1516. https://doi.org/10.1128/AEM.02188-08
Smith, K.F., V. Schmidt, G. E. Rosen and L. Amaral-Zettler, (2012). Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS ONE 7(9), e39971. https://doi.org/10.1371/journal.pone.0039971
Ingerslev, H.C., L. V. Jorgensen, M.L. Strube, N. Larsen, I. Dalsgaard, M. Boye and L. Madsen, (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture. 424, 24-34. https://doi.org/10.1016/j.aquaculture.2013.12.032
Song, W., L. Li, H. Huang, K. Jiang, F. Zhang, X. Chen, M. Zhao and L. Ma, (2016). The Gut Microbial Community of Antarctic Fish Detected by 16S rRNA Gene Sequence Analysis. Biomed Res., ID:3241529:1-7 https://doi.org/10.1155/2016/3241529
Tyagi, A. and B. Singh, 2017. Microbial diversity in Rohu fish gut and inland saline aquaculture sediment and variations associated with next-generation sequencing of 16S rRNA gene. J. Fish. Life Sci., 2: 1-8.
Rawls, J.F., B.S. Samuel and J.I. Gordon, (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Nat. Acad. Sci. USA., 101(13), 4596-4601. 28. Martin-Antonio, B., M. Manchado, C. Infante, R. Zerolo, A. Labella, C. Alonso and J.J. Borrego, (2007). Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes. Aquacult. Res., 38(11). 1213-1222. https://doi.org/10.1111/j.1365- 2109.2007.01790.x
Ye, L., J. Amber, D. Chapman, M. Gaikowski and W.T. Liu, (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J., 8, 541-551. https://doi.org/10.1038/ismej.2013.181
Ringo, E., Z. Zhou, J.L. Gonzalez Vecino, S. et al. (2016). Effects of dietary components on the gut microbiota of aquatic animals: a never-ending story? Aquacult. Nutr., 22, 219-282. https://doi.org/10.1111/anu.12346
Vatsos, I.N., (2016). Standardizing the microbiota of fish used in research. Lab Ani., 51, 353-64. https://doi.org/10.1177/0023677216678825
Rimoldi, S., G. Terova, C. Ascione, R. Giannico and F. Brambilla, (2018). Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal byproduct meals as an alternative to fishmeal protein sources. PLoS ONE 13(3), e0193652. https://doi.org/10.1371/journal.pone.0193652
Hagi, T., D. Tanaka, Y. Iwamura and T. Hoshino, (2004). Diversity and seasonal changes in lactic acid bacteria in the intestinal tracts of cultured fresh water fish. Aquacult., 234, 335-346. https://doi.org/10.1016/j.aquaculture.2004.01.018
Hill, T.C., K.A. Walsh, J.A. Harris and B.F. Moffett, (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol., 43. 1-11. https://doi.org/10.1111/j.1574-6941.2003.tb01040.x
Sivakumar, K., D. Janani and M. Shree Rama, (2015). Analysis of microbial biodiversity in intestine of ornamental fishes gut. Int. J. Fish. Aquatic Stud., 2(6), 232-234
Dieguez, C.M., A. Mira and B. Fouz, (2014). Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass (Dicentrarchus labrax) fed functional diets. FEMS Microbiol. Ecol., 87, 451-459. https://doi.org/10.1111/1574-6941.12236
Li, H., Q. Zhong, S. Wirth, W. Wang, Y. Hao, H. Zou, W. Li and G. Wang, (2015). Diversity of autochthonous bacterial communities in the intestinal mucosa of grass carp (Ctenopharyngodon idellus) (Valenciennes) by culture-dependent and culture-independent techniques. Aquacult. Res., 46, 2344-2359. https://doi.org/10.1111/are.12391
Merrifield, D.L., D. Burnard, G. Bradley, S.J. Davies and R.T.M. Baker, (2009). Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult. Res., 40, 1064-1072. https://doi.org/10.1111/j.1365-2109.2009.02200.x
Wu, S., T. Gao, Y. Zheng, W. Wang, Y. Cheng and G. Wang, (2010). Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquacult., 303, 1-7. https://doi.org/10.1016/j.aquaculture.2009.12.025
Talwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Ind. J. microbiol., 58(4), 397–414. https://doi.org/10.1007/s12088- 018-0760-y
Uddin, N. and A.H. Al-Harbi, (2012). Bacterial flora of polycultured common carp (Cyprinus carpio) and African catfish (Clarias gariepinus). Int. Aquatic Res., 4, 01-09.