Cuticular Hydrocarbon Variation in Rotenone Induced and Transgenically Created Parkinson’s disease (PD) Flies of Drosophila melanogaster

Authors

  • Ali Hatami Dehnow Ph.D. Research Scholar, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, 560006, Karnataka, India
  • Mysore Siddaiah Krishna Associate Professor, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, 560006, Karnataka, India

DOI:

https://doi.org/10.48165/

Keywords:

Cuticular hydrocarbon, Creatine supplement, Parkinson disease, Rotenone, Drosophila melanogaster transgenic PD flies

Abstract

Drosophila melanogaster use cuticular  hydrocarbons (CHCs) to identify species, gender,  and reproductive status. Diet and environmental  factors also influence the cuticular hydrocarbon  variation. Current study examines cuticular  hydrocarbons variations in rotenone-induced  flies and transgenically created Parkinson's  disease (PD) flies. Eleven compounds were found  in control and experimental flies of Drosophila  melanogaster, however, their concentration varied  significantly between control and experimental  flies, which suggests that influence of rotenone,  and creatine supplement on cuticular  hydrocarbon in Drosophila melanogaster. 

Downloads

Download data is not yet available.

References

Ali, H.D. and Krishna, M.S. (2019). Creatine Supplement Effect Similar in Rotenone Induced and Transgenic PD Flies in Drosophila melanogaster. J Pharm Chem Bio Sci. 7, 84-93. 2. Albin, R.L. (2006). Parkinson’s disease: Background, diagnosis, and initial management. ClinGeriatr Med. 22,735–751.

Antony, C. and Jallon, J.M. (1982). Evolution des hydrocarburescomportementalementactifs de Drosophila melanogaster au cours de la maturation sexuelle. C R Seances Acad Sci, 292,239– 242.

Barton, N.H. (1989) Evolutionary quantitative genetics: how little do we know? Annu Rev Gen. 23,337–370.

Bassit, R.A., Curi, R. and Costa Rosa, L.F. (2008). Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids. 35, 425-431.

Bergland, A.O., Behrman, E.L., O'Brien, K.R., Schmidt, P.S. and Petrov, D.A. (2014). Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PloS Genetics. 10,e1004775.

Betarbet, R., Sherer, T.B. and Mackenzie, G. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 3,1301–130.

Bové, J.D., Prou, C., Perier, S. and Przedborski. (2005). Toxin-induced models of Parkinson’s disease. Neuron Rx.2,484-494.

Celotto, A.M. and Palladino, M.J. (2005). Drosophila, a model system to study neurodegeneration. Molecular Interventions. 5,292–303.

Coulom, H. and Birman, S. (2004). Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci. 24,10993–10998.

Cooper, R., Naclerio, F., Allgrove, J. and Jimenez, A. (2012). Creatine supplementation with specific view to exercise/sports performance. J IntSoc Sports Nutr. 20, 33.

Dinis-Oliveira, R.J., Remia, F. and Carmo, H. (2005). Paraquat exposure as an etiological factor of Parkinson’s disease. NeuroToxicology. 27,1110–1122.

Fanson, B.G. and Taylor, P.W. (2011). Protein: carbohydrate ratios explain life span patterns found in Queensland fruit fly on diets varying in yeast: sugar ratios Age. DOI. 10.1007/s11357-011-9308-3.

Ferveur, J.F. (2005). Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behavior Genetics. 35,279–295.

Fimognari, C., Sestili, P., Lenzi, M., Cantelli-Forti, G. and Hrelia, P. (2009). Protective effect of creatine against RNA damage. Mutat Res. 670, 59-67.

Fontana, L., Partridge. L. and Longo, V.D. (2010). Extending healthy life span–from yeast to humans. Science. 328, 321–326.

Francesca, C., Drouin-Ouellet, J. and Robert, E.G. (2009). Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 30,475–483.

Fricke, C., Bretman, A. and Chapman, T. (2008). Adult male nutrition and reproductive success in Drosophila melanogaster. Evolution. 62, 3170–3177.

Gosden, T.P. and Chenoweth, S.F. (2011).On the evolution of heightened condition dependence of male sexual displays. J Evol Biol. 24, 685–692.

Greenamyre, J.T., MacKenzie, G., Peng, T.I. and Stephans, S.E. (1999). Mitochondrial dysfunction in Parkinson's disease. BiochemSociSymp. 66,85-97.

Guidi, C., Potenza, L., Sestili, P., Martinelli, C., Guescini, M. and Stocchi, L. (2008). Differential effect of creatine on oxidatively-injured mitochondrial and nuclear DNA. BiochimBiophysActa. 1780, 16-26.

Howard, R.W. and Blomquist, G.J. (2005). Ecological, behavioral, andbiochemical aspects of insect hydrocarbons. Annu Rev Entomol. 50, 371–393.

Hedrick, P.W., Ginevan, M.E. and Ewing, E.P. (1976). Genetic polymorphism in heterogeneous environments. Annu Rev EcolEvolSyste. 7,1–32.

Jallon, J.M. (2006). A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet. 14,441–478.

Kent, C., Azanchi, R., Smith, B., Chu, A. and Levine, J. (2007). A Model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster. PLoS ONE. 2, e962.

Lang, A.E. and Lozano, A.M. (1998). Parkinson’s disease. First of two parts. N Engl J Med. 339,1044–1053.

Lenz, H., Schmidt, M., Welge, V., Schlattner, U., Wallimann, T. and Elsässer, H.P. (2005). The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J Invest Dermatol. 124, 443-452.

Liu, B., Gao, H.M. and Hong, J.S. (2003). Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Envir Heal Persp. 111(8), 1065-1073.

Luyten, I. (1982). Intraspecific and interspecific variations of the cuticular hydrocarbons in Drosophila simulans and related species. C R SeancesAcad Sci. 295,733–736.

Nomura, A., Zhang, M., Sakamoto, T., Ishii, Y., Morishima, Y. and Mochizuki, M. (2003). Anti-inflammatory activity of creatine supplementation in endothelial cells in vitro. Br J Pharmacol. 139, 715-720.

Patel, F.(2011). Pesticidal suicide: adult fatal rotenone poisoning. J Fore Leg Medi. 18(7), 340- 342.

Piper, M.D., Partridge, L., Raubenheimer, D. and Simpson, S.J. (2011). Dietary restriction and aging: a unifying perspective. Cell Metab. 14, 154–160.

Ravikumar, H. and Saraf, R.R. (2010). Attenuation of Rotenone-Induced Mitochondrial Oxidative Damage and Neurotoxicty in Drosophila melanogaster Supplemented with Creatine. Neurochem Res. 35, 1402-1412.

Reiter, R.J., Acuna-Castrviej, O.D. and Tan, D.X. (2001),Free radical mediated molecular damage, mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci. 939,200–215.

Rundle, H.D., Chenoweth, S.F. and Blows, M.W. (2009). The diversification of mate preferences by natural and sexual selection. J. Evol. Biol. 22, 1608–1615.

Ryu, E.J., Harding, H.P., Angelastro, J.M., Vitolo, O.V., Ron, D. and Greene, L.A. (2002). Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci. 22, 10690–10698.

Sherer, T.B.,Betarbet, R. and Stout, A.K. (2002).An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered a-synuclein metabolism and oxidative damage. J Neurosci. 22,7006–7015.

Savarit, F. and Ferveur, J.F. (2002). Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol. 205, 3241–3249. 39. Sestili, P., Martinelli, C., Colombo , E., Barbieri, E., Potenza, L. and Sartini, S. (2011). Creatine as an antioxidant. Amino Acids. 40, 1385-1396.

Sestili, P., Martinelli, C., Bravi, G., Piccoli, G., Curci, R. and Battistelli, M. (2006). Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free RadicBiol Med. 40, 837-849.

Sharma, M.D., Mitchell, C., Hun,t J., Tregenza, T. and Hosken, D.J. (2012). The genetics of cuticular hydrocarbon profiles in the fruit fly Drosophila simulans. J. Hered. 103, 230–239. 42. Simpson, S.J. and Raubenheimer, D. (2009). Macronutrient balance and lifespan. Aging (Albany NY). 1, 875–880.

Talyana, K., De Melo1, José. F., De, Medeiros., José, E., Sobrinho., Vladimir, B., Figueiredo., Paulo, S. and De Souza. (2013). Evapotranspiration and crop coefficients of melon plants measured by lysimeter and estimated according to FAO 56 methodology. EngAgrícJaboticabal. 34(5), 929-939.

Takahashi, A., Fujiwara-Tsujii, N., Yamaoka, R., Itoh, M., Ozaki, M. Takano-Shimizu, T. (2012). Cuticular hydrocarbon content that affects male mate preference of Drosophila melanogaster from West Africa. Inter J Evol Biol. 1–10.

Venard, R. and Jallon, J.M. (1980). Evidence for an aphrodisiac pheromone of female Drosophila. Experientia. 36,211–213.

Yeaman, S. and Jarvis, A. (2006). Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc of Royal Society B: Biol Sci. 273,1587–1593.

Tukey, J.W. (1977). Exploratory data analysis (Vol. 2).

Published

2020-08-15

How to Cite

Cuticular Hydrocarbon Variation in Rotenone Induced and Transgenically Created Parkinson’s disease (PD) Flies of Drosophila melanogaster . (2020). Bulletin of Pure & Applied Sciences- Zoology , 39(2), 281–287. https://doi.org/10.48165/