An Ethical Overview of Animal Welfare and the Use of Antibiotics
DOI:
https://doi.org/10.48165/Keywords:
Ethics, Animal Welfare, AntibioticAbstract
Antibiotic use in livestock has been indicted for playing a key role in the emerging public health calamity of antibiotic resistance in human beings. While antibiotics are vital medical tools that help to fight bacterial infections, scientific opinion proposes that if animal farmers continue to use them sub-therapeutically in animal feeds, they will pose a severe threat to human health as well as animals. This paper object to the use of antibiotics in animal feeds, not only because it affects human health, but insofar as it also promotes or makes possible farming practices that significantly harm animals, and has no independent value aside from doing so. This paper argues that it is possible to stop the spread of disease through proper sanitation and effective cleaning of farms while providing animals with environments that fit their needs and interests. Furthermore, improvements in production practices that reflect good animal welfare is something that we owe to animals, as they are beings with interests and needs that ought to be respected and protected in the same way that our interests and needs ought to be.
Downloads
References
Aaltola, E. (2012). Animal Suffering: Philosophy and Culture. Animal Suffering: Philosophy and Culture. doi:10.1057/9781137271822
Aaltola, E. (2013). Skepticism, Empathy, and Animal Suffering. Journal of Bioethical Inquiry, 10(4), 457–467. doi:10.1007/s11673-013-9481-4
Abd El-Hack, M. E., Alagawany, M., Shaheen, H., Samak, D., Othman, S. I., Allam, A, Sitohy, M. (2020). Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals, 10(3), 452. doi:10.3390/ani10030452
Albala, K., & Rollin, B. E. (2015). Pew Commission on Industrial Farm Animal Production. In The SAGE Encyclopedia of Food Issues. doi:10.4135/9781483346304.n341
Antimicrobials. (2020). Nature Biotechnology, 38(4), 416. doi:10.1038/s41587-020-0488-1 6. Bagno, O. A., Prokhorov, O. N., Shevchenko, S. A., Shevchenko, A. I., & Dyadichkina, T. V. (2018). Use of phytobioticts in farm animal feeding. Sel’skokhozyaistvennaya Biologiya. doi:10.15389/agrobiology.2018.4.687eng
Bartelt, D. A. (2014). Antibiotic-resistant pathogens. The Nurse Practitioner, 39(8), 19–21. doi:10.1097/01.npr.0000451910.48050.1b
Bernal-Barragán, H., Cerrillo-Soto, M. A., García-Mazcorro, J. F., Juárez-Reyes, A. S., & Salem, A. Z. M. (2013). Antibiotics in animal nutrition. In Nutritional Strategies of Animal Feed Additives (pp. 25–46).
Betzig, L. (2012). Means, variances, and ranges in reproductive success: Comparative evidence. Evolution and Human Behavior, 33(4), 309–317. doi:10.1016/j.evolhumbehav.2011.10.008
Bruce, S., & Yearley, S. (2014). Phylogenetic Scale. In The SAGE Dictionary of Sociology. doi:10.4135/9781446279137.n733
Centner, T. J. (2016). Efforts to slacken antibiotic resistance: Labeling meat products from animals raised without antibiotics in the United States. Science of the Total Environment. doi:10.1016/j.scitotenv.2016.05.082
Davies, J. (2006). Are antibiotics naturally antibiotics? In Journal of Industrial Microbiology and Biotechnology (Vol. 33, pp. 496–499). doi:10.1007/s10295-006-0112-5
DeGrazia, D. (2012). Animals’ moral status and the issue of equal consideration. In Taking Animals Seriously (pp. 36–74). doi:10.1017/cbo9781139172967.003
Finkelman, R. D., & Polson, A. M. (2015). Local antimicrobials. Journal of the American Dental Association. doi:10.1016/j.adaj.2015.08.003
Francione, G. (2015). Equal Consideration and the Interest of Nonhuman Animals in Continued Existence: A Response to Professor Sunstein. University of Chicago Legal Forum, 2006(1), 8.
Francione, G. L. (2018). Reflections on Tom Regan and the Animal Rights Movement That Once Was. Between the Species, 21(1), 1–41. Retrieved from http://digitalcommons.calpoly.edu/bts/
Grandin, T., & Deesing, M. (2002). Distress in Animals : Is it Fear, Pain or Physical Stress ? American Board of Veterinary Practitioners - Symposium, 11, 1–7.
Hancock, R. E. W., & Strohl, W. R. (2001). Antimicrobials: Antimicrobials in the 21st century. Current Opinion in Microbiology, 4(5), 491–492.
Katz, S. E., & Ward, P. M. L. (2005). Antibiotic residues in foods and their significance. In Antimicrobials in Food, Third Edition (pp. 599–619). doi:10.1201/9781420028737.ch18 20. Lindsay, R. A. (2017). Animals, Moral Status, And The Objectives Of Morality. Think, 16(47), 33–43. doi:10.1017/s1477175617000197
Marinelli, F., & Tomasz, A. (2010). Antimicrobials. Current Opinion in Microbiology. doi:10.1016/j.mib.2010.09.010
Morton, D. B. (2000). Self-consciousness and animal suffering. Biologist, 47(2), 77–80. 23. Ogar, J. N., Ogar, T. E., & Anyim, M. N. M. (2016). Selected Issues in Biomedical Ethics and its Social Implications: African Consideration. International Journal of Research, 5.
Ojong, L. O. (2019). Singer’s Notion Of Speciesism: A Case For Animal Rights In Ejagham Culture. International Journal of Environmental Pollution and Environmental Modelling, 116-121. 25. Papapetropoulou, M., & Mavridou, A. (2018). Emerging bacterial pathogens in bottled water. Acta Microbiologica Hellenica.
Refsdal, A. O. (2000). To treat or not to treat: A proper use of hormones and antibiotics. In Animal Reproduction Science (Vol. 60–61, pp. 109–119). doi:10.1016/S0378-4320(00)00094-4 27. Regan, T. (1990). Christianity and Animal Rights: The Challenge and Promise. In Liberating Life: Contemporary Approaches in Ecological Theology (pp. 73–87). Retrieved from http://www.religion-online.org/showarticle.asp?title=2326
Robbins, P. (2014). Union of Concerned Scientists (UCS). In Encyclopedia of Environment and Society. doi:10.4135/9781412953924.n1113
Rowlands, M. (1998). Tom Regan: Animal Rights as Natural Rights. In Animal Rights (pp. 87– 119). doi:10.1007/978-1-349-26780-4_5
Rowlands, M. (2020). The Moral Animal. In The Routledge Handbook of Animal Ethics (pp. 83– 91). doi:10.4324/9781315105840-8
Singer, R. S., Porter, L. J., Thomson, D. U., Gage, M., Beaudoin, A., & Wishnie, J. K. (2019). Raising Animals Without Antibiotics. Frontiers in Veterinary Science, 6. doi:10.3389/fvets.2019.00452
Smith, R. A., M’ikanatha, N. M., & Read, A. F. (2015). Antibiotic Resistance: A Primer and Call to Action. Health Communication, 30(3), 309–314. doi:10.1080/10410236.2014.943634 33. USDA. (2015). Coffee : World Markets and Trade. Coffee: world markets and trade. Retrieved from http://www.fas.usda.gov/psdonline/circulars/coffee.pdf
Waldrop, G. L. (2009). Smaller is better for antibiotic discovery.ACS Chemical Biology, 4(6), 397–399. doi:10.1021/cb900122j
Whitney, D. L., Evans, B. W., Vega-Granillo, R., Vidal-Solano, J. R. J. R., Herrera-Urbina, S., Sanchez Uribe, J., … Alle. (2014). Acrobatics (Dex) Total. Chemical Geology, 50(1-2), 1–2. doi:10.1017/CBO9781107415324.004
Wildfire, A. (2017). Anticipating the next Influenza Vaccine - A viral challenge based on data. Pharmaceutical Outsourcing, 18(5).
Woappi, Y., Gabani, P., Singh, A., & Singh, O. V. (2016). Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. Critical Reviews in Microbiology. doi:10.3109/1040841X.2013.875982
Wohlleben, W., Mast, Y., Stegmann, E., & Ziemert, N. (2016). Antibiotic drug discovery. Microbial Biotechnology, 9(5), 541–