Anti-Hypertensive and Anti-Microbial Activity of Protein Hydrolysate Obtained from Seven Edible Insects

Authors

  • Parameswarann Matheswara PG & Research Department of Zoology, NKR Government Arts College for Women, Namakkal, Tamil Nadu 637001, India.
  • Latha Raja PG & Research Department of Zoology, NKR Government Arts College for Women, Namakkal, Tamil Nadu 637001, India.
  • Sharmila Banu Gani Head & Assist. Professor,PG & Research Department of Zoology,NKR Government Arts College for Women,Namakkal, Tamil Nadu 637001, India.

DOI:

https://doi.org/10.48165/

Keywords:

Seven Edible Insect, Functional Protein, Antihypertensive, Anti Microbialactivities

Abstract

The bioactive peptides derived from plants and  insects have increased contemplation for their  function in preventing numerous diseases,  including, cardiovascular diseases and microbial  infection. Edible insects comprise rich contents of  bioactive peptides, which are recognized as  antioxidant, anti-inflammatory, anti-diabetic, and  anti-obesity properties. The current investigation was aimed to assess the antihypertensive and  anti-microbial properties of protein hydrolysates  obtained from renowned seven edible insects’  after simulated gastrointestinal enzymatic  digestion. Antihypertensive efficiency was  determined by the inhibition of digestive  enzymes viz., ACE inhibitory activity. Three  active protein hydrolysate extracts (1.25, 2.5, and  5mg/dl) were selected based on the IC50 values  and all tested extracts inhibited those enzyme  activities in a dose-respective manner.  Antimicrobial activity was analyzed by the  Kirby–Bauer test using nine strains of Gram positive/negative bacteria with Candida albicans.  Based on the present study, we found the  outcome of antihypertensive and antimicrobial  activityof the protein hydrolysate obtained from  the seven edible insects. 

Downloads

Download data is not yet available.

References

Abu Hasan, Z.', Williams, H., Ismail, N.M., Othman, H., Cozier, G.E., Acharya, K.R., Isaac, R.E. (2017). The toxicity of angiotensin-converting enzyme inhibitors to larvae of the disease vectors Aedesaegypti and Anopheles gambiae. Sci Rep. 7:45409.

Arendse, L.B., Danser, A.H.J., Poglitsch, M., Touyz, R.M., Burnett, J.C. Jr, Llorens-Cortes, C., Ehlers, M.R., Sturrock, E.D. (2019). Novel Therapeutic Approaches Targeting the Renin Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol. Rev. 71: 539-570.

Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S., Itoh, M. (2001). Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci. 57: 319-324.

Banu, G.S., Kumar, G. (2009). Preliminary screening of endophytic fungi from medicinal plants in India for antimicrobial and antitumour activity. Int.J. Pharma. Sci. Nanotechnol. 2: 566-571.

Banu, G.S., Kumar, G.,Umamahesh, P., Karthikeyan, S. (2009). Evaluation of antimicrobial activity of saponins extract of Trianthemaportulacastrum. Int.J. Pharma. Sci. Nanotechnol. 2: 667-670.

Brady, D., Grapputo, A., Romoli, O., Sandrelli, F. (2019). InsectCecropins, AntimicrobialPeptides with Potential Therapeutic Applications.Int. J. Mol. Sci. 20: E5862. 7. Brogden, N.K., Brogden, K.A. (2011). Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents. 38: 217–225.

Brown, D.F., Kothari, D. (1975). Comparison of antibioticdiscs from differentsources. J .Clin. Pathol.28(10): 779-783.

Bueno-Gavilá, E., Abellán, A., Girón-Rodríguez, F., Cayuela, J.M., Salazar, E., Gómez, R., Tejada, L. (2019). Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynarascolymus L.) proteases.J Dairy Sci. 102: 10711-10723

Byun, H.G., Kim, S.K. (2001). Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragrachalcogramma) skin. Process Biochem. 36:1155-1162.

Cajado-Carvalho, D., Kuniyoshi, A.K., Duzzi, B., Iwai, L.K., Oliveira, Ú.C., Junqueira de Azevedo, I.L., Kodama, R.T., Portaro, F.V. (2016). Insights into the hypertensive effects of Tityusserrulatus scorpion venom: purification of an angiotensin-convertingenzyme-like peptidase. Toxins.8: 348

Chen, A.Y., Adamek, R.N., Dick, B.L., Credille, C.V., Morrison, C.N., Cohen, S.M. (2019). Targeting Metalloenzymes for Therapeutic Intervention. Chem. Rev. 119:1323-1455.

Chen, J., Liu, Y., Wang, G., Sun, S., Liu, R., Hong, B., Gao, R., Bai, K. (2018). processing optimization and characterization of angiotensin-ι-converting enzyme inhibitory peptides from lizardfish (Synodusmacrops) scale gelatin. Marine Drugs 16: 228.

Chen, J., Ryu, B., Zhang, Y., Liang, P., Li, C., Zhou, C., Yang, P., Hong, P., Qian, Z.J. (2020). Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromisniloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J.Sci. Food Agri.100: 315-324.

Coley, K.M., Perosky, J.E., Nyanplu, A., Kofa, A., Anankware, J.P., Moyer, C.A., Lori, J.R. (2020). Acceptability and feasibility of insect consumption among pregnant women in Liberia.MaternChildNutr. e12990.

Dang, X.L., Wang, Y.S., Huang, Y.D., Yu, X.Q., Zhang, W.Q. (2011).

Purification and characterization of an antimicrobial peptide, insect defensin, from immunized housefly (Diptera: Muscidae). J. Med. Entomol.47: 1141–1145.

Dellafiora, L., Pugliese, R., Bollati, C., Gelain, F., Galaverna, G., Arnoldi, A., Lammi, C. (2020). Bottom-Up" Strategy for the Identification of Novel Soybean Peptides with Angiotensin Converting Enzyme Inhibitory Activity.J. Agri. Food Chem. 68: 2082-2090.

Do, S., Koutsos, L., Utterback, P.L., Parsons, C.M., de Godoy, M.R.C., Swanson, K.S. (2020). Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision fed cecectomized rooster assay1.J. Animal Sci. 98: pii: skz363

Fu, P., Wu, J.W., Guo, G. (2009). Purification and molecular identification of an antifungal peptide from the hemolymph of Musca domestica (housefly). Cell MolImmunol. 6: 245–251. 20. Ganesan, K., Gani, S.B. (2014). Relationship between ABO, Rh Blood Groups and Diabetes Mellitus, obesity in Namakkal town, Tamilnadu. Int. J. Adv. Pharm. Biol. Chem. 3: 995-998. 21. Ganesan, K., Sukalingam, K., Xu, B. (2018). Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases-A critical review. Trends Food Sci Technol. 71: 132-154. 22. Ganesan, K., Xu, B. (2018). Anti-obesity Effects of Medicinal and Edible Mushrooms. Molecules 23: 2880.

GirónCalle, J., Alaiz, M., Vioque, J. (2010). Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Res. Int. 43:1365-1370.

Greenhalgh, J.P., Amund, D. (2019). Examining the Presence of Cronobacter spp. in Ready-to eat Edible Insects.Food Safety7:74-78.

Guo, G., Tao, R., Li, Y., Ma, H., Xiu, J., Fu, P., Wu, J. (2017). Identification and characterization of a novel antimicrobial protein from the housefly Musca domestica. Biochem. Biophys. Res. Comm. 490: 746–752.

Hall, F., Johnson, P.E., Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodessigillatus) protein. Food Chem. 262: 39-47. 27. Hashemi, M.M., Holden, B.S., Durnas, B., Bucki, R., Savage, P.B. (2017). Ceragenins as mimics of endogenous antimicrobial peptides. Int. J. Antimicrob. Agents. 3: 141.

Igarashi, K., Yoshioka, K., Mizutani, K., Miyakoshi, M., Murakami, T., Akizawa, T. (2006). Blood pressure-depressing activity of a peptide derived from silkworm fibroin in spontaneously hypertensive rats. Biosci.Biotechnol.Biochem.70: 517-520.

Kumar, G., Banu, G.S., Murugesan, A.G. (2008). Effect of Helicteresisorabark extracts on heart antioxidant status and lipid peroxidation in streptozotocin diabetic rats. J. Appl. Biomed. 6: 89- 95.

Li, Z., Liu, X., Li, Y., Lan, X., Leung, P.H., Li, J., Lin, X. (2016). Composite membranes of recombinant silkworm antimicrobial peptide and poly (L-lactic Acid) (PLLA) for biomedical application. Sci. Rep. 6: 31149.

Liceaga, A.M. (2019). Approaches for Utilizing Insect Protein for Human Consumption: Effect of Enzymatic Hydrolysis on Protein Quality and Functionality.Ann. Entomol. Soc. Am. 112: 529-532

Liceaga, A. M., Hall, F. (2019). Nutritional, functional and bioactive protein hydrolysates, In L. Melton, F. Shahidi, P. abd Varelis (eds.), Encyclopedia of food chemistry, vol. 3. Elsevier, NY. pp. 456–464.

Bulletin of Pure and Applied Sciences / Vol.39A (Zoology), No.1 /January-June 2020 214

Parameswaran Matheswaran, Latha Raja, Sharmila Banu Gani

Liu, D., Guo, Y., Wu, P., Wang, Y., Kwaku Golly, M., Ma, H. (2020). The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities.Food Chem. 311:125960.

Liu, L., Wei, Y., Chang, Q., Sun, H., Chai, K., Huang, Z., Zhao, Z., Zhao, Z. (2017). Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement DerivedBiocarbon: Waste Conversion by Waste.J. Agri. Food Chem. 65:11202-11211.

Liu, P., Lan, X., Yaseen, M., Wu, S., Feng, X., Zhou, L., Sun, J., Liao, A., Liao, D., Sun, L. (2019). Purification, Characterization and Evaluation of Inhibitory Mechanism of ACEInhibitoryPeptides from Pearl Oyster (Pinctadafucatamartensii) Meat Protein Hydrolysate.Marine Drugs. 17: E463.

Lo, W.M.Y., Farnworth, E.R., Li-Chan, E.C.Y. (2006). Angiotensin I-converting enzyme inhibitory activity of soy protein digests in a dynamic model system simulating the upper gastrointestinal tract. J. Food Sci. 71: 231-237.

Ma, G., Wu, L., Shao, F., Zhang, C., Wan, H. (2019). Antimicrobial activity of 11 Insects extracts against multi drug resistant (MDR) strains of bacteria and fungus. IOP Conf. Series: Earth Environ Sci. 252: 022132

Majumder, K., Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs. J. Agri. Food Chem. 57: 471-477. 39. Matheswaran, P., Raja, L., Gani, S.B. (2019). Antioxidant and anti-inflammatory efficacy of functional proteins obtained from seven edible insects. Int. J. Entomol. Res. 4: 24-31 40. Matheswaran, P., Raja, L., Gani, S.B. (2020). Anti-diabetic and anti-obesity effect of functionally active proteins obtained from seven edible insects. Int. J. Pharma. Sci. Res. 11: 1000-1009. doi: 10.13040/IJPSR.0975-8232.11(9).1000-09.

Melo-Braga, M.N., Almeida, F.M., Dos Santos, D.M., de AvelarJúnior, J.T., Dos Reis, P.V.M., de Lima, M.E.(2020). AntimicrobialPeptides from Lycosidae (Sundevall, 1833) Spiders.Curr. Protein Pept. Sci.doi: 10.2174/1389203721666200116091911.

Murray, B.A., Walsh, D.J., FitzGerald, R.J. (2004). Modification of the furanacryloyl-L phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. J. Biochem. Biophys. Methods. 59:127-137.

Ochiai, M., Inada, M., Horiguchi, S. (2020). Nutritional and safety evaluation of locust (Caelifera) powder as a novel food material.J Food Sci. 85: 279-288.

Pandian, M.R., Banu, G.S., Kumar, G. (2006a). A study of antimicrobial activity of Alangiumsalviifolium. Indian J Pharmacol. 38: 203-204

Pandian, M.R., Banu, G.S., Kumar, G. (2006b). Cardioprotective effect of Aegle marmeloson isoproterenol induced rats. Nat. J. Life Sci. 3:143-146.

Pattarayingsakul, W., Nilavongse, A., Reamtong, O., Chittavanich, P., Mungsantisuk, I., Mathong, Y., Prasitwuttisak, W., Panbangred, W. (2017). Angiotensin-converting enzyme inhibitory and antioxidant peptides from digestion of larvae and pupae of Asian weaver ant, Oecophyllasmaragdina, Fabricius.J. Sci. Food Agri. 97:3133-3140.

Pujiastuti, D.Y., Ghoyatul Amin, M.N., Alamsjah, M.A., Hsu, J.L. (2019). Marine organisms as potential sources of bioactive peptides that inhibit the activity of angiotensin I-converting enzyme: A review. Molecules. 24: 2541.

Sarker, S.K., Ganesan, K., Paul, R. (2015). Current Prescribing Pattern of Antihypertensive Drugs in Preeclampsia.Int. J. Integ. Med. Sci. 2:110-113.

Saviane, A., Romoli, O., Bozzato, A., Freddi, G., Cappelletti, C., Rosini, E., Cappellozza, S., Tettamanti, G., Sandrelli, F. (2018). Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains.Transgenic Res. 27:87-101.

Scott, J.G., Warren, W.C., Beukeboom, L.W., Bopp, D., Clark, A.G., Giers, S.D., Hediger, M., Jones, A.K., Kasai, S., Leichter, C.A., Li, M., Meisel, R.P., Minx, P., Murphy, T.D., Nelson, D.R., Reid, W.R., Rinkevich, F.D., Robertson, H.M., Sackton, T.B., Sattelle, D.B., Thibaud-Nissen, F., Tomlinson, C., van de Zande, L., Walden, K.K., Wilson, R.K., Liu, N. (2014). Genome of the housefly, MuscadomesticaL., a globalvector of diseases with adaptations to a septicenvironment. Genome Biol. 15: 46651. Shu, Y., Cao, X.Y., Chen, J. (2019). Preparation and antagonistic effect of ACEinhibitory peptide from cashew.J.Sci.FoodAgri.99:6822-6832.

Ssepuuya, G., Nakimbugwe, D., De Winne, A., Smets, R., Claes, J., Van Der Borght, M. (2020). Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspoliadifferensserville.Food Res. Int. 129:108831.

Van Huis, A. (2020). Nutrition and health of edible insects.Curr. Opin. Clin. Nutr. Metab. Care.doi: 10.1097/MCO.0000000000000641.

Vásquez-Villanueva, R., Orellana, J.M., Marina, M.L., García, M.C. (2019). Isolation and Characterization of Angiotensin-Converting Enzyme InhibitoryPeptides from Peach Seed Hydrolysates: In Vivo Assessment of Antihypertensive Activity.J. Agri. Food Chem. 67:10313- 10320

Vercruysse, L., Smagghe, G., Herregods, G., Van Camp, J. (2005). ACE inhibitory activity in enzymatic hydrolysates of insect protein. J. Agri. Food Chem. 53: 5207-5211.

Wang, W., Shen, S.R., Chen, Q.H., Ruan, H., He, G.Q., Undurti, N.D. (2008). Hydrolysates of Silkworm Pupae (Bombyxmori) Protein Is a New Source of Angiotensin-I-Converting Enzyme Inhibitory Peptides (ACEIP). Curr. Pharma. Biotechnol. 9: 307-314.

Wang, W., Wang, N., Zhou, Y., Zhang, Y., Xu, L.H., Xu, J.F. (2010). Isolation of a Novel Peptide from Silkworm Pupae Protein Components and Interaction Characteristics to Angiotensin I-Converting Enzyme. Eur.FoodRes.Technol.232: 29-38.

Xu, B., Ganesan, K., Mickymaray, S., Abdulaziz Alfaiz, F, Thatchinamoorthi, R., Al Aboody, M.S.(2020). Immunomodulatory and antineoplastic efficacy of common spices and their connection with phenolic antioxidants. Bioactive Comp. Health Dis 3: 15.

Yi, H.Y., Chowdhury, M., Huang, Y.D., Yu, X.Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98: 5807-5822.

Zielińska, E., Baraniak, B., Karaś, M. (2018). Identification of antioxidant and anti inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodessigillatus, Tenebrio molitor, Schistocercagragaria). Int. J. Food Sci. Technol. 53: 2542-2551.

Zou, Z., Wang, M., Wang, Z., Aluko, R.E., He, R. (2020). Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates.J Food Biochem. 44: e13090.

Published

2020-06-21

How to Cite

Anti-Hypertensive and Anti-Microbial Activity of Protein Hydrolysate Obtained from Seven Edible Insects . (2020). Bulletin of Pure & Applied Sciences- Zoology , 39(1), 206–216. https://doi.org/10.48165/