The Anatomical Structure of the Medicinal Raw Material Acorus Calamus L. in the Conditions of Culture of the Samarkand Region (Uzbekistan)

Authors

  • Y Sh Tashpulatov Samarkand state university, Smarkand, Uzbekistan

DOI:

https://doi.org/10.48165/

Keywords:

Acorus calamus L, Anatomical structure, Meristem, Parenchyma, Microscopy

Abstract

While roots of many species and groups of flowering plants have recently been studied  developmentally, the roots of the plants considered to be basal monocotyledons by the Angiosperm  Phylogeny Group (Angiosperm Phylogeny Group, 1998, 2003) have received little attention with  regard to root characteristics that may be relevant to their phylogenetic position. The basal  monocotyledon, Acorus calamus (sweet flag, Acoraceae), has been determined to diverge quite early  from the trunk of the phylogenetic tree of angiosperms. This species is phylogenetically closely  associated with the basal dicotyledonous angiosperm group, the Nymphaeales (Angiosperm  Phylogeny Group, 1998, 2003), which has been recognized to be an ancient group (Friis et al., 2001).  The phylogenetic position of Acorus was determined mainly from nucleic acid sequencing analysis,  but anatomical and morphological data supporting this position are rather scarce. While some  features of its root apex and general root anatomy were reported long ago (Janczewski, 1874; Holle,  1876; Kroll, 1912), little consistent information has been found on the developmental and structural  features of its roots (Keating, 2003), except for the analysis of vessels by Carlquist and Schneider  (1997). Therefore, attention was focused on the root apical meristem and the development of the  cortex of adventitious roots in Acorus calamus, but also included are related observations on other root  features, including stelar and epidermal characteristics. 

Downloads

Download data is not yet available.

References

Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85: 531–553.

Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399–436

Brundrett MC, Enstone DE, Peterson CA. 1988. A berberine–aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 1446: 133–142. 4. Brundrett MC, Kendrick B, Peterson CA. 1987. Efficient lipid staining in plant material with sudan red 7B or fluorol yellow 088 in polyethylene glycol. Biotechnic & Histochemistry 66: 133–142.

Carlquist S, Schneider EL. 1997. Origins and nature of vessels in monocotyledons. I. Acorus. International Journal of Plant Sciences 158: 51–56.

Clarkson DT, Robards K. 1975. The endodermis, its structural development and physiological role. In: Torrey JG, Clarkson DT, eds. Structure and function of roots. London: Academic Press, 415–436.

Clowes FAL. 1981. The difference between open and closed meristems. Annals of Botany 48: 761–767.

Clowes FAL. 2000. Pattern in root meristem development in angiosperms. New Phytologist 146: 83–94.

Conard HS. 1905. The waterlilies: a monograph of the genus Nymphaea. Washington, DC: Carnegie Institution of Washington.

Duvall MR. 2001. An anatomical study of anther development in Acorus L.: phylogenetic implications. Plant Systematics and Evolution 228: 143–152.

Eames AJ. 1961. Morphology of the angiosperms. New York, NY: McGraw-Hill. 12. Fleet van DS. 1961. Histochemistry and function of the endodermis. Botanical Review 27: 165– 220.

Floyd SK, Friedman WE. 2001. Evolution of endosperm developmental patterns among basal flowering plants. International Journal of Plant Sciences 161: S57–S81.

Friis EM, Pedersen KR, Crane PR. 2001. Fossil evidence of water lilies (Nymphaeales) in the early cretaceous. Nature 410: 357–360.

Groot EP, Doyle JA, Nichol SA, Rost TL. 2004. Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms. International Journal of Plant Sciences 165: 97–105.

Guttenberg von H. 1968. Der primäre Bau der Angiospermenwurzel. In: Linsbauer K, Tischler G, Pascher A, eds. Handbuch der Pflanzenanatomie, Vol. VIII. Berlin: Gebrüder Borntraeger, 1– 472.

Haas DL, Carothers ZB. 1975. Some ultrastructural observations on endodermal cell development in Zea mays roots. American Journal of Botany 62: 336–348.

Haupt AW. 1953. Plant morphology. New York, NY: McGraw-Hill.

Holle HG. 1876. Über den Vegetationspunkt der Angiospermen Wurzeln, insbesondere die Haubenbildung. Botanische Zeitung 34: 241–255, 257–264.

Janczewski E de. 1874. Recherches sur l'accroissement terminal des racines dans les Phanerogames. Annales des Sciences Naturelles Series 20: 162–201.

Jensen WA. 1962.Botanical histochemistry. San Francisco, CA: W.H. Freeman and Co. 22. Justin SHFW, Armstrong W. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist 106: 465–405.

Keating RC. 2003. The anatomy of the monocotyledons. Vol. IX. The Acoraceae and Araceae. Oxford: Oxford University Press.

Kroemer K. 1903. Wurzelhaut Hypodermis und Endodermis der Angiospermwurzel. Bibliotheca Botanica 59: 1–151.

Kroll GH. 1912. Kritische Studie über die Verwertbarkeit der Wurzelhaubentypen für Entwicklungsgeschicte. Beiheft zum Botanisches Zentralblatt 28: 134–158.

Laan P, Berrovoets MJ, Lythe S, Armstrong W, Blom CWPM. 1989. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. Journal of Ecology 77: 693–703.

Maillefer A. 1921. Sur la presence d'une assise dans la racine d'Acorus calamus Bulletin de la Societie vaudoise des sciences naturelles 53: 77–79.

Nêmec B. 1907. Anatomie a fyziologie rostlin. Prague, Czech Republic: Nakladatelství České Akademie Císaře Františka Josefa pro Vědy, Slovesnost a Umění.

Schneider EL, Carlquist S, Beamer K, Kohn A. 1995. Vessels in Nymphaeaceae: Nuphar, Nymphaea, and Ondinea International Journal of Plant Sciences 156: 857–862.

Seago Jr JL. 2002. The root cortex of the Nymphaeaceae, Cabombaceae, and Nelumbonaceae. Journal of the Torrey Botanical Society 129: 1–9.

Seago Jr JL, Peterson CA, Kinsley LJ, Broderick J. 2000. Development and structure of the root cortex in Caltha palustris L. and Nymphaea cordata Ait. Annals of Botany 86: 631–640. 32. Shishkoff N. 1987. Distribution of the dimorphic hypodermis of roots in Angiosperm families. Annals of Botany 60: 1–15.

Soltis DE, Soltis PS, Bennet MD, Leitch IJ. 2003. Evolution of genome size in the angiosperms. American Journal of Botany 90: 1596–1603.

Soukup A, Votrubova O, Cizkova H. 2002. Development of anatomical structure of roots of Phragmites australis New Phytologist 153: 277–287.

Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X. 2002. Archae fructaceae, a new Basal Angiosperm family. Science 296: 899–904.

Published

2020-06-15

How to Cite

The Anatomical Structure of the Medicinal Raw Material Acorus Calamus L. in the Conditions of Culture of the Samarkand Region (Uzbekistan) . (2020). Bulletin of Pure & Applied Sciences- Zoology , 39(1), 107–115. https://doi.org/10.48165/